| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m2detleiblem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for m2detleib 22539. (Contributed by AV, 12-Dec-2018.) |
| Ref | Expression |
|---|---|
| m2detleiblem1.n | ⊢ 𝑁 = {1, 2} |
| m2detleiblem1.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| m2detleiblem1.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
| m2detleiblem1.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
| m2detleiblem1.o | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| m2detleiblem1 | ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri 4598 | . . . . 5 ⊢ (𝑄 ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} → (𝑄 = {〈1, 1〉, 〈2, 2〉} ∨ 𝑄 = {〈1, 2〉, 〈2, 1〉})) | |
| 2 | fveq2 6817 | . . . . . . . 8 ⊢ (𝑄 = {〈1, 1〉, 〈2, 2〉} → (𝑆‘𝑄) = (𝑆‘{〈1, 1〉, 〈2, 2〉})) | |
| 3 | m2detleiblem1.n | . . . . . . . . 9 ⊢ 𝑁 = {1, 2} | |
| 4 | eqid 2730 | . . . . . . . . 9 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
| 5 | m2detleiblem1.p | . . . . . . . . 9 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
| 6 | eqid 2730 | . . . . . . . . 9 ⊢ ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁) | |
| 7 | m2detleiblem1.s | . . . . . . . . 9 ⊢ 𝑆 = (pmSgn‘𝑁) | |
| 8 | 3, 4, 5, 6, 7 | psgnprfval1 19427 | . . . . . . . 8 ⊢ (𝑆‘{〈1, 1〉, 〈2, 2〉}) = 1 |
| 9 | 2, 8 | eqtrdi 2781 | . . . . . . 7 ⊢ (𝑄 = {〈1, 1〉, 〈2, 2〉} → (𝑆‘𝑄) = 1) |
| 10 | 1z 12494 | . . . . . . 7 ⊢ 1 ∈ ℤ | |
| 11 | 9, 10 | eqeltrdi 2837 | . . . . . 6 ⊢ (𝑄 = {〈1, 1〉, 〈2, 2〉} → (𝑆‘𝑄) ∈ ℤ) |
| 12 | fveq2 6817 | . . . . . . . 8 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → (𝑆‘𝑄) = (𝑆‘{〈1, 2〉, 〈2, 1〉})) | |
| 13 | 3, 4, 5, 6, 7 | psgnprfval2 19428 | . . . . . . . 8 ⊢ (𝑆‘{〈1, 2〉, 〈2, 1〉}) = -1 |
| 14 | 12, 13 | eqtrdi 2781 | . . . . . . 7 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → (𝑆‘𝑄) = -1) |
| 15 | neg1z 12500 | . . . . . . 7 ⊢ -1 ∈ ℤ | |
| 16 | 14, 15 | eqeltrdi 2837 | . . . . . 6 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → (𝑆‘𝑄) ∈ ℤ) |
| 17 | 11, 16 | jaoi 857 | . . . . 5 ⊢ ((𝑄 = {〈1, 1〉, 〈2, 2〉} ∨ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (𝑆‘𝑄) ∈ ℤ) |
| 18 | 1, 17 | syl 17 | . . . 4 ⊢ (𝑄 ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} → (𝑆‘𝑄) ∈ ℤ) |
| 19 | 1ex 11100 | . . . . 5 ⊢ 1 ∈ V | |
| 20 | 2nn 12190 | . . . . 5 ⊢ 2 ∈ ℕ | |
| 21 | 4, 5, 3 | symg2bas 19298 | . . . . 5 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}}) |
| 22 | 19, 20, 21 | mp2an 692 | . . . 4 ⊢ 𝑃 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} |
| 23 | 18, 22 | eleq2s 2847 | . . 3 ⊢ (𝑄 ∈ 𝑃 → (𝑆‘𝑄) ∈ ℤ) |
| 24 | m2detleiblem1.y | . . . 4 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
| 25 | eqid 2730 | . . . 4 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 26 | m2detleiblem1.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
| 27 | 24, 25, 26 | zrhmulg 21439 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑆‘𝑄) ∈ ℤ) → (𝑌‘(𝑆‘𝑄)) = ((𝑆‘𝑄)(.g‘𝑅) 1 )) |
| 28 | 23, 27 | sylan2 593 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) = ((𝑆‘𝑄)(.g‘𝑅) 1 )) |
| 29 | 7 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → 𝑆 = (pmSgn‘𝑁)) |
| 30 | 29 | fveq1d 6819 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) = ((pmSgn‘𝑁)‘𝑄)) |
| 31 | 30 | oveq1d 7356 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → ((𝑆‘𝑄)(.g‘𝑅) 1 ) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
| 32 | 28, 31 | eqtrd 2765 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2110 Vcvv 3434 {cpr 4576 〈cop 4580 ran crn 5615 ‘cfv 6477 (class class class)co 7341 1c1 10999 -cneg 11337 ℕcn 12117 2c2 12172 ℤcz 12460 Basecbs 17112 .gcmg 18972 SymGrpcsymg 19274 pmTrspcpmtr 19346 pmSgncpsgn 19394 1rcur 20092 Ringcrg 20144 ℤRHomczrh 21429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-addf 11077 ax-mulf 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-ot 4583 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-xnn0 12447 df-z 12461 df-dec 12581 df-uz 12725 df-rp 12883 df-fz 13400 df-fzo 13547 df-seq 13901 df-exp 13961 df-fac 14173 df-bc 14202 df-hash 14230 df-word 14413 df-lsw 14462 df-concat 14470 df-s1 14496 df-substr 14541 df-pfx 14571 df-splice 14649 df-reverse 14658 df-s2 14747 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-0g 17337 df-gsum 17338 df-mre 17480 df-mrc 17481 df-acs 17483 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-submnd 18684 df-efmnd 18769 df-grp 18841 df-minusg 18842 df-mulg 18973 df-subg 19028 df-ghm 19118 df-gim 19164 df-oppg 19251 df-symg 19275 df-pmtr 19347 df-psgn 19396 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-cring 20147 df-rhm 20383 df-subrng 20454 df-subrg 20478 df-cnfld 21285 df-zring 21377 df-zrh 21433 |
| This theorem is referenced by: m2detleiblem5 22533 m2detleiblem6 22534 |
| Copyright terms: Public domain | W3C validator |