Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > m2detleiblem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for m2detleib 21688. (Contributed by AV, 12-Dec-2018.) |
Ref | Expression |
---|---|
m2detleiblem1.n | ⊢ 𝑁 = {1, 2} |
m2detleiblem1.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
m2detleiblem1.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
m2detleiblem1.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
m2detleiblem1.o | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
m2detleiblem1 | ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 4580 | . . . . 5 ⊢ (𝑄 ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} → (𝑄 = {〈1, 1〉, 〈2, 2〉} ∨ 𝑄 = {〈1, 2〉, 〈2, 1〉})) | |
2 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑄 = {〈1, 1〉, 〈2, 2〉} → (𝑆‘𝑄) = (𝑆‘{〈1, 1〉, 〈2, 2〉})) | |
3 | m2detleiblem1.n | . . . . . . . . 9 ⊢ 𝑁 = {1, 2} | |
4 | eqid 2738 | . . . . . . . . 9 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
5 | m2detleiblem1.p | . . . . . . . . 9 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
6 | eqid 2738 | . . . . . . . . 9 ⊢ ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁) | |
7 | m2detleiblem1.s | . . . . . . . . 9 ⊢ 𝑆 = (pmSgn‘𝑁) | |
8 | 3, 4, 5, 6, 7 | psgnprfval1 19045 | . . . . . . . 8 ⊢ (𝑆‘{〈1, 1〉, 〈2, 2〉}) = 1 |
9 | 2, 8 | eqtrdi 2795 | . . . . . . 7 ⊢ (𝑄 = {〈1, 1〉, 〈2, 2〉} → (𝑆‘𝑄) = 1) |
10 | 1z 12280 | . . . . . . 7 ⊢ 1 ∈ ℤ | |
11 | 9, 10 | eqeltrdi 2847 | . . . . . 6 ⊢ (𝑄 = {〈1, 1〉, 〈2, 2〉} → (𝑆‘𝑄) ∈ ℤ) |
12 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → (𝑆‘𝑄) = (𝑆‘{〈1, 2〉, 〈2, 1〉})) | |
13 | 3, 4, 5, 6, 7 | psgnprfval2 19046 | . . . . . . . 8 ⊢ (𝑆‘{〈1, 2〉, 〈2, 1〉}) = -1 |
14 | 12, 13 | eqtrdi 2795 | . . . . . . 7 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → (𝑆‘𝑄) = -1) |
15 | neg1z 12286 | . . . . . . 7 ⊢ -1 ∈ ℤ | |
16 | 14, 15 | eqeltrdi 2847 | . . . . . 6 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → (𝑆‘𝑄) ∈ ℤ) |
17 | 11, 16 | jaoi 853 | . . . . 5 ⊢ ((𝑄 = {〈1, 1〉, 〈2, 2〉} ∨ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (𝑆‘𝑄) ∈ ℤ) |
18 | 1, 17 | syl 17 | . . . 4 ⊢ (𝑄 ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} → (𝑆‘𝑄) ∈ ℤ) |
19 | 1ex 10902 | . . . . 5 ⊢ 1 ∈ V | |
20 | 2nn 11976 | . . . . 5 ⊢ 2 ∈ ℕ | |
21 | 4, 5, 3 | symg2bas 18915 | . . . . 5 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}}) |
22 | 19, 20, 21 | mp2an 688 | . . . 4 ⊢ 𝑃 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} |
23 | 18, 22 | eleq2s 2857 | . . 3 ⊢ (𝑄 ∈ 𝑃 → (𝑆‘𝑄) ∈ ℤ) |
24 | m2detleiblem1.y | . . . 4 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
25 | eqid 2738 | . . . 4 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
26 | m2detleiblem1.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
27 | 24, 25, 26 | zrhmulg 20623 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑆‘𝑄) ∈ ℤ) → (𝑌‘(𝑆‘𝑄)) = ((𝑆‘𝑄)(.g‘𝑅) 1 )) |
28 | 23, 27 | sylan2 592 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) = ((𝑆‘𝑄)(.g‘𝑅) 1 )) |
29 | 7 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → 𝑆 = (pmSgn‘𝑁)) |
30 | 29 | fveq1d 6758 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) = ((pmSgn‘𝑁)‘𝑄)) |
31 | 30 | oveq1d 7270 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → ((𝑆‘𝑄)(.g‘𝑅) 1 ) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
32 | 28, 31 | eqtrd 2778 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {cpr 4560 〈cop 4564 ran crn 5581 ‘cfv 6418 (class class class)co 7255 1c1 10803 -cneg 11136 ℕcn 11903 2c2 11958 ℤcz 12249 Basecbs 16840 .gcmg 18615 SymGrpcsymg 18889 pmTrspcpmtr 18964 pmSgncpsgn 19012 1rcur 19652 Ringcrg 19698 ℤRHomczrh 20613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-xor 1504 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-word 14146 df-lsw 14194 df-concat 14202 df-s1 14229 df-substr 14282 df-pfx 14312 df-splice 14391 df-reverse 14400 df-s2 14489 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-efmnd 18423 df-grp 18495 df-minusg 18496 df-mulg 18616 df-subg 18667 df-ghm 18747 df-gim 18790 df-oppg 18865 df-symg 18890 df-pmtr 18965 df-psgn 19014 df-cmn 19303 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-rnghom 19874 df-subrg 19937 df-cnfld 20511 df-zring 20583 df-zrh 20617 |
This theorem is referenced by: m2detleiblem5 21682 m2detleiblem6 21683 |
Copyright terms: Public domain | W3C validator |