MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleiblem1 Structured version   Visualization version   GIF version

Theorem m2detleiblem1 20798
Description: Lemma 1 for m2detleib 20805. (Contributed by AV, 12-Dec-2018.)
Hypotheses
Ref Expression
m2detleiblem1.n 𝑁 = {1, 2}
m2detleiblem1.p 𝑃 = (Base‘(SymGrp‘𝑁))
m2detleiblem1.y 𝑌 = (ℤRHom‘𝑅)
m2detleiblem1.s 𝑆 = (pmSgn‘𝑁)
m2detleiblem1.o 1 = (1r𝑅)
Assertion
Ref Expression
m2detleiblem1 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g𝑅) 1 ))

Proof of Theorem m2detleiblem1
StepHypRef Expression
1 elpri 4419 . . . . 5 (𝑄 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}} → (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∨ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}))
2 fveq2 6433 . . . . . . . 8 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑆𝑄) = (𝑆‘{⟨1, 1⟩, ⟨2, 2⟩}))
3 m2detleiblem1.n . . . . . . . . 9 𝑁 = {1, 2}
4 eqid 2825 . . . . . . . . 9 (SymGrp‘𝑁) = (SymGrp‘𝑁)
5 m2detleiblem1.p . . . . . . . . 9 𝑃 = (Base‘(SymGrp‘𝑁))
6 eqid 2825 . . . . . . . . 9 ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁)
7 m2detleiblem1.s . . . . . . . . 9 𝑆 = (pmSgn‘𝑁)
83, 4, 5, 6, 7psgnprfval1 18293 . . . . . . . 8 (𝑆‘{⟨1, 1⟩, ⟨2, 2⟩}) = 1
92, 8syl6eq 2877 . . . . . . 7 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑆𝑄) = 1)
10 1z 11735 . . . . . . 7 1 ∈ ℤ
119, 10syl6eqel 2914 . . . . . 6 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑆𝑄) ∈ ℤ)
12 fveq2 6433 . . . . . . . 8 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑆𝑄) = (𝑆‘{⟨1, 2⟩, ⟨2, 1⟩}))
133, 4, 5, 6, 7psgnprfval2 18294 . . . . . . . 8 (𝑆‘{⟨1, 2⟩, ⟨2, 1⟩}) = -1
1412, 13syl6eq 2877 . . . . . . 7 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑆𝑄) = -1)
15 neg1z 11741 . . . . . . 7 -1 ∈ ℤ
1614, 15syl6eqel 2914 . . . . . 6 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑆𝑄) ∈ ℤ)
1711, 16jaoi 888 . . . . 5 ((𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∨ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → (𝑆𝑄) ∈ ℤ)
181, 17syl 17 . . . 4 (𝑄 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}} → (𝑆𝑄) ∈ ℤ)
19 1ex 10352 . . . . 5 1 ∈ V
20 2nn 11424 . . . . 5 2 ∈ ℕ
214, 5, 3symg2bas 18168 . . . . 5 ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}})
2219, 20, 21mp2an 683 . . . 4 𝑃 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
2318, 22eleq2s 2924 . . 3 (𝑄𝑃 → (𝑆𝑄) ∈ ℤ)
24 m2detleiblem1.y . . . 4 𝑌 = (ℤRHom‘𝑅)
25 eqid 2825 . . . 4 (.g𝑅) = (.g𝑅)
26 m2detleiblem1.o . . . 4 1 = (1r𝑅)
2724, 25, 26zrhmulg 20218 . . 3 ((𝑅 ∈ Ring ∧ (𝑆𝑄) ∈ ℤ) → (𝑌‘(𝑆𝑄)) = ((𝑆𝑄)(.g𝑅) 1 ))
2823, 27sylan2 586 . 2 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) = ((𝑆𝑄)(.g𝑅) 1 ))
297a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → 𝑆 = (pmSgn‘𝑁))
3029fveq1d 6435 . . 3 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → (𝑆𝑄) = ((pmSgn‘𝑁)‘𝑄))
3130oveq1d 6920 . 2 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → ((𝑆𝑄)(.g𝑅) 1 ) = (((pmSgn‘𝑁)‘𝑄)(.g𝑅) 1 ))
3228, 31eqtrd 2861 1 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g𝑅) 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wo 878   = wceq 1656  wcel 2164  Vcvv 3414  {cpr 4399  cop 4403  ran crn 5343  cfv 6123  (class class class)co 6905  1c1 10253  -cneg 10586  cn 11350  2c2 11406  cz 11704  Basecbs 16222  .gcmg 17894  SymGrpcsymg 18147  pmTrspcpmtr 18211  pmSgncpsgn 18259  1rcur 18855  Ringcrg 18901  ℤRHomczrh 20208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-xor 1638  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-ot 4406  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-tpos 7617  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-xnn0 11691  df-z 11705  df-dec 11822  df-uz 11969  df-rp 12113  df-fz 12620  df-fzo 12761  df-seq 13096  df-exp 13155  df-fac 13354  df-bc 13383  df-hash 13411  df-word 13575  df-lsw 13623  df-concat 13631  df-s1 13656  df-substr 13701  df-pfx 13750  df-splice 13857  df-reverse 13875  df-s2 13969  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-0g 16455  df-gsum 16456  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-mhm 17688  df-submnd 17689  df-grp 17779  df-minusg 17780  df-mulg 17895  df-subg 17942  df-ghm 18009  df-gim 18052  df-oppg 18126  df-symg 18148  df-pmtr 18212  df-psgn 18261  df-cmn 18548  df-mgp 18844  df-ur 18856  df-ring 18903  df-cring 18904  df-rnghom 19071  df-subrg 19134  df-cnfld 20107  df-zring 20179  df-zrh 20212
This theorem is referenced by:  m2detleiblem5  20799  m2detleiblem6  20800
  Copyright terms: Public domain W3C validator