MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleiblem1 Structured version   Visualization version   GIF version

Theorem m2detleiblem1 22651
Description: Lemma 1 for m2detleib 22658. (Contributed by AV, 12-Dec-2018.)
Hypotheses
Ref Expression
m2detleiblem1.n 𝑁 = {1, 2}
m2detleiblem1.p 𝑃 = (Base‘(SymGrp‘𝑁))
m2detleiblem1.y 𝑌 = (ℤRHom‘𝑅)
m2detleiblem1.s 𝑆 = (pmSgn‘𝑁)
m2detleiblem1.o 1 = (1r𝑅)
Assertion
Ref Expression
m2detleiblem1 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g𝑅) 1 ))

Proof of Theorem m2detleiblem1
StepHypRef Expression
1 elpri 4671 . . . . 5 (𝑄 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}} → (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∨ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}))
2 fveq2 6920 . . . . . . . 8 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑆𝑄) = (𝑆‘{⟨1, 1⟩, ⟨2, 2⟩}))
3 m2detleiblem1.n . . . . . . . . 9 𝑁 = {1, 2}
4 eqid 2740 . . . . . . . . 9 (SymGrp‘𝑁) = (SymGrp‘𝑁)
5 m2detleiblem1.p . . . . . . . . 9 𝑃 = (Base‘(SymGrp‘𝑁))
6 eqid 2740 . . . . . . . . 9 ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁)
7 m2detleiblem1.s . . . . . . . . 9 𝑆 = (pmSgn‘𝑁)
83, 4, 5, 6, 7psgnprfval1 19564 . . . . . . . 8 (𝑆‘{⟨1, 1⟩, ⟨2, 2⟩}) = 1
92, 8eqtrdi 2796 . . . . . . 7 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑆𝑄) = 1)
10 1z 12673 . . . . . . 7 1 ∈ ℤ
119, 10eqeltrdi 2852 . . . . . 6 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑆𝑄) ∈ ℤ)
12 fveq2 6920 . . . . . . . 8 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑆𝑄) = (𝑆‘{⟨1, 2⟩, ⟨2, 1⟩}))
133, 4, 5, 6, 7psgnprfval2 19565 . . . . . . . 8 (𝑆‘{⟨1, 2⟩, ⟨2, 1⟩}) = -1
1412, 13eqtrdi 2796 . . . . . . 7 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑆𝑄) = -1)
15 neg1z 12679 . . . . . . 7 -1 ∈ ℤ
1614, 15eqeltrdi 2852 . . . . . 6 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑆𝑄) ∈ ℤ)
1711, 16jaoi 856 . . . . 5 ((𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∨ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → (𝑆𝑄) ∈ ℤ)
181, 17syl 17 . . . 4 (𝑄 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}} → (𝑆𝑄) ∈ ℤ)
19 1ex 11286 . . . . 5 1 ∈ V
20 2nn 12366 . . . . 5 2 ∈ ℕ
214, 5, 3symg2bas 19434 . . . . 5 ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}})
2219, 20, 21mp2an 691 . . . 4 𝑃 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
2318, 22eleq2s 2862 . . 3 (𝑄𝑃 → (𝑆𝑄) ∈ ℤ)
24 m2detleiblem1.y . . . 4 𝑌 = (ℤRHom‘𝑅)
25 eqid 2740 . . . 4 (.g𝑅) = (.g𝑅)
26 m2detleiblem1.o . . . 4 1 = (1r𝑅)
2724, 25, 26zrhmulg 21543 . . 3 ((𝑅 ∈ Ring ∧ (𝑆𝑄) ∈ ℤ) → (𝑌‘(𝑆𝑄)) = ((𝑆𝑄)(.g𝑅) 1 ))
2823, 27sylan2 592 . 2 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) = ((𝑆𝑄)(.g𝑅) 1 ))
297a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → 𝑆 = (pmSgn‘𝑁))
3029fveq1d 6922 . . 3 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → (𝑆𝑄) = ((pmSgn‘𝑁)‘𝑄))
3130oveq1d 7463 . 2 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → ((𝑆𝑄)(.g𝑅) 1 ) = (((pmSgn‘𝑁)‘𝑄)(.g𝑅) 1 ))
3228, 31eqtrd 2780 1 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g𝑅) 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  Vcvv 3488  {cpr 4650  cop 4654  ran crn 5701  cfv 6573  (class class class)co 7448  1c1 11185  -cneg 11521  cn 12293  2c2 12348  cz 12639  Basecbs 17258  .gcmg 19107  SymGrpcsymg 19410  pmTrspcpmtr 19483  pmSgncpsgn 19531  1rcur 20208  Ringcrg 20260  ℤRHomczrh 21533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-xor 1509  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719  df-splice 14798  df-reverse 14807  df-s2 14897  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-0g 17501  df-gsum 17502  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-efmnd 18904  df-grp 18976  df-minusg 18977  df-mulg 19108  df-subg 19163  df-ghm 19253  df-gim 19299  df-oppg 19386  df-symg 19411  df-pmtr 19484  df-psgn 19533  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-cnfld 21388  df-zring 21481  df-zrh 21537
This theorem is referenced by:  m2detleiblem5  22652  m2detleiblem6  22653
  Copyright terms: Public domain W3C validator