Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > m2detleiblem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for m2detleib 21878. (Contributed by AV, 12-Dec-2018.) |
Ref | Expression |
---|---|
m2detleiblem1.n | ⊢ 𝑁 = {1, 2} |
m2detleiblem1.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
m2detleiblem1.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
m2detleiblem1.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
m2detleiblem1.o | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
m2detleiblem1 | ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 4594 | . . . . 5 ⊢ (𝑄 ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} → (𝑄 = {〈1, 1〉, 〈2, 2〉} ∨ 𝑄 = {〈1, 2〉, 〈2, 1〉})) | |
2 | fveq2 6819 | . . . . . . . 8 ⊢ (𝑄 = {〈1, 1〉, 〈2, 2〉} → (𝑆‘𝑄) = (𝑆‘{〈1, 1〉, 〈2, 2〉})) | |
3 | m2detleiblem1.n | . . . . . . . . 9 ⊢ 𝑁 = {1, 2} | |
4 | eqid 2736 | . . . . . . . . 9 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
5 | m2detleiblem1.p | . . . . . . . . 9 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
6 | eqid 2736 | . . . . . . . . 9 ⊢ ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁) | |
7 | m2detleiblem1.s | . . . . . . . . 9 ⊢ 𝑆 = (pmSgn‘𝑁) | |
8 | 3, 4, 5, 6, 7 | psgnprfval1 19218 | . . . . . . . 8 ⊢ (𝑆‘{〈1, 1〉, 〈2, 2〉}) = 1 |
9 | 2, 8 | eqtrdi 2792 | . . . . . . 7 ⊢ (𝑄 = {〈1, 1〉, 〈2, 2〉} → (𝑆‘𝑄) = 1) |
10 | 1z 12443 | . . . . . . 7 ⊢ 1 ∈ ℤ | |
11 | 9, 10 | eqeltrdi 2845 | . . . . . 6 ⊢ (𝑄 = {〈1, 1〉, 〈2, 2〉} → (𝑆‘𝑄) ∈ ℤ) |
12 | fveq2 6819 | . . . . . . . 8 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → (𝑆‘𝑄) = (𝑆‘{〈1, 2〉, 〈2, 1〉})) | |
13 | 3, 4, 5, 6, 7 | psgnprfval2 19219 | . . . . . . . 8 ⊢ (𝑆‘{〈1, 2〉, 〈2, 1〉}) = -1 |
14 | 12, 13 | eqtrdi 2792 | . . . . . . 7 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → (𝑆‘𝑄) = -1) |
15 | neg1z 12449 | . . . . . . 7 ⊢ -1 ∈ ℤ | |
16 | 14, 15 | eqeltrdi 2845 | . . . . . 6 ⊢ (𝑄 = {〈1, 2〉, 〈2, 1〉} → (𝑆‘𝑄) ∈ ℤ) |
17 | 11, 16 | jaoi 854 | . . . . 5 ⊢ ((𝑄 = {〈1, 1〉, 〈2, 2〉} ∨ 𝑄 = {〈1, 2〉, 〈2, 1〉}) → (𝑆‘𝑄) ∈ ℤ) |
18 | 1, 17 | syl 17 | . . . 4 ⊢ (𝑄 ∈ {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} → (𝑆‘𝑄) ∈ ℤ) |
19 | 1ex 11064 | . . . . 5 ⊢ 1 ∈ V | |
20 | 2nn 12139 | . . . . 5 ⊢ 2 ∈ ℕ | |
21 | 4, 5, 3 | symg2bas 19088 | . . . . 5 ⊢ ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}}) |
22 | 19, 20, 21 | mp2an 689 | . . . 4 ⊢ 𝑃 = {{〈1, 1〉, 〈2, 2〉}, {〈1, 2〉, 〈2, 1〉}} |
23 | 18, 22 | eleq2s 2855 | . . 3 ⊢ (𝑄 ∈ 𝑃 → (𝑆‘𝑄) ∈ ℤ) |
24 | m2detleiblem1.y | . . . 4 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
25 | eqid 2736 | . . . 4 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
26 | m2detleiblem1.o | . . . 4 ⊢ 1 = (1r‘𝑅) | |
27 | 24, 25, 26 | zrhmulg 20809 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑆‘𝑄) ∈ ℤ) → (𝑌‘(𝑆‘𝑄)) = ((𝑆‘𝑄)(.g‘𝑅) 1 )) |
28 | 23, 27 | sylan2 593 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) = ((𝑆‘𝑄)(.g‘𝑅) 1 )) |
29 | 7 | a1i 11 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → 𝑆 = (pmSgn‘𝑁)) |
30 | 29 | fveq1d 6821 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) = ((pmSgn‘𝑁)‘𝑄)) |
31 | 30 | oveq1d 7344 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → ((𝑆‘𝑄)(.g‘𝑅) 1 ) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
32 | 28, 31 | eqtrd 2776 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g‘𝑅) 1 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1540 ∈ wcel 2105 Vcvv 3441 {cpr 4574 〈cop 4578 ran crn 5615 ‘cfv 6473 (class class class)co 7329 1c1 10965 -cneg 11299 ℕcn 12066 2c2 12121 ℤcz 12412 Basecbs 17001 .gcmg 18788 SymGrpcsymg 19062 pmTrspcpmtr 19137 pmSgncpsgn 19185 1rcur 19824 Ringcrg 19870 ℤRHomczrh 20799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-addf 11043 ax-mulf 11044 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-xor 1509 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-ot 4581 df-uni 4852 df-int 4894 df-iun 4940 df-iin 4941 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-tpos 8104 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-2o 8360 df-oadd 8363 df-er 8561 df-map 8680 df-pm 8681 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-dju 9750 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-xnn0 12399 df-z 12413 df-dec 12531 df-uz 12676 df-rp 12824 df-fz 13333 df-fzo 13476 df-seq 13815 df-exp 13876 df-fac 14081 df-bc 14110 df-hash 14138 df-word 14310 df-lsw 14358 df-concat 14366 df-s1 14392 df-substr 14444 df-pfx 14474 df-splice 14553 df-reverse 14562 df-s2 14652 df-struct 16937 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-ress 17031 df-plusg 17064 df-mulr 17065 df-starv 17066 df-tset 17070 df-ple 17071 df-ds 17073 df-unif 17074 df-0g 17241 df-gsum 17242 df-mre 17384 df-mrc 17385 df-acs 17387 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-mhm 18519 df-submnd 18520 df-efmnd 18596 df-grp 18668 df-minusg 18669 df-mulg 18789 df-subg 18840 df-ghm 18920 df-gim 18963 df-oppg 19038 df-symg 19063 df-pmtr 19138 df-psgn 19187 df-cmn 19475 df-mgp 19808 df-ur 19825 df-ring 19872 df-cring 19873 df-rnghom 20046 df-subrg 20119 df-cnfld 20696 df-zring 20769 df-zrh 20803 |
This theorem is referenced by: m2detleiblem5 21872 m2detleiblem6 21873 |
Copyright terms: Public domain | W3C validator |