MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleiblem1 Structured version   Visualization version   GIF version

Theorem m2detleiblem1 21219
Description: Lemma 1 for m2detleib 21226. (Contributed by AV, 12-Dec-2018.)
Hypotheses
Ref Expression
m2detleiblem1.n 𝑁 = {1, 2}
m2detleiblem1.p 𝑃 = (Base‘(SymGrp‘𝑁))
m2detleiblem1.y 𝑌 = (ℤRHom‘𝑅)
m2detleiblem1.s 𝑆 = (pmSgn‘𝑁)
m2detleiblem1.o 1 = (1r𝑅)
Assertion
Ref Expression
m2detleiblem1 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g𝑅) 1 ))

Proof of Theorem m2detleiblem1
StepHypRef Expression
1 elpri 4570 . . . . 5 (𝑄 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}} → (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∨ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}))
2 fveq2 6651 . . . . . . . 8 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑆𝑄) = (𝑆‘{⟨1, 1⟩, ⟨2, 2⟩}))
3 m2detleiblem1.n . . . . . . . . 9 𝑁 = {1, 2}
4 eqid 2824 . . . . . . . . 9 (SymGrp‘𝑁) = (SymGrp‘𝑁)
5 m2detleiblem1.p . . . . . . . . 9 𝑃 = (Base‘(SymGrp‘𝑁))
6 eqid 2824 . . . . . . . . 9 ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁)
7 m2detleiblem1.s . . . . . . . . 9 𝑆 = (pmSgn‘𝑁)
83, 4, 5, 6, 7psgnprfval1 18639 . . . . . . . 8 (𝑆‘{⟨1, 1⟩, ⟨2, 2⟩}) = 1
92, 8syl6eq 2875 . . . . . . 7 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑆𝑄) = 1)
10 1z 11998 . . . . . . 7 1 ∈ ℤ
119, 10eqeltrdi 2924 . . . . . 6 (𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} → (𝑆𝑄) ∈ ℤ)
12 fveq2 6651 . . . . . . . 8 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑆𝑄) = (𝑆‘{⟨1, 2⟩, ⟨2, 1⟩}))
133, 4, 5, 6, 7psgnprfval2 18640 . . . . . . . 8 (𝑆‘{⟨1, 2⟩, ⟨2, 1⟩}) = -1
1412, 13syl6eq 2875 . . . . . . 7 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑆𝑄) = -1)
15 neg1z 12004 . . . . . . 7 -1 ∈ ℤ
1614, 15eqeltrdi 2924 . . . . . 6 (𝑄 = {⟨1, 2⟩, ⟨2, 1⟩} → (𝑆𝑄) ∈ ℤ)
1711, 16jaoi 854 . . . . 5 ((𝑄 = {⟨1, 1⟩, ⟨2, 2⟩} ∨ 𝑄 = {⟨1, 2⟩, ⟨2, 1⟩}) → (𝑆𝑄) ∈ ℤ)
181, 17syl 17 . . . 4 (𝑄 ∈ {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}} → (𝑆𝑄) ∈ ℤ)
19 1ex 10622 . . . . 5 1 ∈ V
20 2nn 11696 . . . . 5 2 ∈ ℕ
214, 5, 3symg2bas 18510 . . . . 5 ((1 ∈ V ∧ 2 ∈ ℕ) → 𝑃 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}})
2219, 20, 21mp2an 691 . . . 4 𝑃 = {{⟨1, 1⟩, ⟨2, 2⟩}, {⟨1, 2⟩, ⟨2, 1⟩}}
2318, 22eleq2s 2934 . . 3 (𝑄𝑃 → (𝑆𝑄) ∈ ℤ)
24 m2detleiblem1.y . . . 4 𝑌 = (ℤRHom‘𝑅)
25 eqid 2824 . . . 4 (.g𝑅) = (.g𝑅)
26 m2detleiblem1.o . . . 4 1 = (1r𝑅)
2724, 25, 26zrhmulg 20643 . . 3 ((𝑅 ∈ Ring ∧ (𝑆𝑄) ∈ ℤ) → (𝑌‘(𝑆𝑄)) = ((𝑆𝑄)(.g𝑅) 1 ))
2823, 27sylan2 595 . 2 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) = ((𝑆𝑄)(.g𝑅) 1 ))
297a1i 11 . . . 4 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → 𝑆 = (pmSgn‘𝑁))
3029fveq1d 6653 . . 3 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → (𝑆𝑄) = ((pmSgn‘𝑁)‘𝑄))
3130oveq1d 7153 . 2 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → ((𝑆𝑄)(.g𝑅) 1 ) = (((pmSgn‘𝑁)‘𝑄)(.g𝑅) 1 ))
3228, 31eqtrd 2859 1 ((𝑅 ∈ Ring ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) = (((pmSgn‘𝑁)‘𝑄)(.g𝑅) 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2115  Vcvv 3479  {cpr 4550  cop 4554  ran crn 5537  cfv 6336  (class class class)co 7138  1c1 10523  -cneg 10856  cn 11623  2c2 11678  cz 11967  Basecbs 16472  .gcmg 18213  SymGrpcsymg 18484  pmTrspcpmtr 18558  pmSgncpsgn 18606  1rcur 19240  Ringcrg 19286  ℤRHomczrh 20633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-addf 10601  ax-mulf 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-ot 4557  df-uni 4820  df-int 4858  df-iun 4902  df-iin 4903  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-5 11689  df-6 11690  df-7 11691  df-8 11692  df-9 11693  df-n0 11884  df-xnn0 11954  df-z 11968  df-dec 12085  df-uz 12230  df-rp 12376  df-fz 12884  df-fzo 13027  df-seq 13363  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-word 13856  df-lsw 13904  df-concat 13912  df-s1 13939  df-substr 13992  df-pfx 14022  df-splice 14101  df-reverse 14110  df-s2 14199  df-struct 16474  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-ress 16480  df-plusg 16567  df-mulr 16568  df-starv 16569  df-tset 16573  df-ple 16574  df-ds 16576  df-unif 16577  df-0g 16704  df-gsum 16705  df-mre 16846  df-mrc 16847  df-acs 16849  df-mgm 17841  df-sgrp 17890  df-mnd 17901  df-mhm 17945  df-submnd 17946  df-efmnd 18023  df-grp 18095  df-minusg 18096  df-mulg 18214  df-subg 18265  df-ghm 18345  df-gim 18388  df-oppg 18463  df-symg 18485  df-pmtr 18559  df-psgn 18608  df-cmn 18897  df-mgp 19229  df-ur 19241  df-ring 19288  df-cring 19289  df-rnghom 19456  df-subrg 19519  df-cnfld 20532  df-zring 20604  df-zrh 20637
This theorem is referenced by:  m2detleiblem5  21220  m2detleiblem6  21221
  Copyright terms: Public domain W3C validator