MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrhpsgnelbas Structured version   Visualization version   GIF version

Theorem zrhpsgnelbas 20870
Description: Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.)
Hypotheses
Ref Expression
zrhpsgnelbas.p 𝑃 = (Base‘(SymGrp‘𝑁))
zrhpsgnelbas.s 𝑆 = (pmSgn‘𝑁)
zrhpsgnelbas.y 𝑌 = (ℤRHom‘𝑅)
Assertion
Ref Expression
zrhpsgnelbas ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅))

Proof of Theorem zrhpsgnelbas
StepHypRef Expression
1 zrhpsgnelbas.p . . . 4 𝑃 = (Base‘(SymGrp‘𝑁))
2 zrhpsgnelbas.s . . . 4 𝑆 = (pmSgn‘𝑁)
31, 2psgnran 19190 . . 3 ((𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑆𝑄) ∈ {1, -1})
433adant1 1129 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑆𝑄) ∈ {1, -1})
5 elpri 4591 . . 3 ((𝑆𝑄) ∈ {1, -1} → ((𝑆𝑄) = 1 ∨ (𝑆𝑄) = -1))
6 zrhpsgnelbas.y . . . . . . . 8 𝑌 = (ℤRHom‘𝑅)
7 eqid 2737 . . . . . . . 8 (1r𝑅) = (1r𝑅)
86, 7zrh1 20785 . . . . . . 7 (𝑅 ∈ Ring → (𝑌‘1) = (1r𝑅))
9 eqid 2737 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
109, 7ringidcl 19874 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
118, 10eqeltrd 2838 . . . . . 6 (𝑅 ∈ Ring → (𝑌‘1) ∈ (Base‘𝑅))
12113ad2ant1 1132 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘1) ∈ (Base‘𝑅))
13 fveq2 6809 . . . . . 6 ((𝑆𝑄) = 1 → (𝑌‘(𝑆𝑄)) = (𝑌‘1))
1413eleq1d 2822 . . . . 5 ((𝑆𝑄) = 1 → ((𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅) ↔ (𝑌‘1) ∈ (Base‘𝑅)))
1512, 14syl5ibr 245 . . . 4 ((𝑆𝑄) = 1 → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅)))
16 neg1z 12426 . . . . . . . 8 -1 ∈ ℤ
17 eqid 2737 . . . . . . . . 9 (.g𝑅) = (.g𝑅)
186, 17, 7zrhmulg 20782 . . . . . . . 8 ((𝑅 ∈ Ring ∧ -1 ∈ ℤ) → (𝑌‘-1) = (-1(.g𝑅)(1r𝑅)))
1916, 18mpan2 688 . . . . . . 7 (𝑅 ∈ Ring → (𝑌‘-1) = (-1(.g𝑅)(1r𝑅)))
20 ringgrp 19855 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2116a1i 11 . . . . . . . 8 (𝑅 ∈ Ring → -1 ∈ ℤ)
229, 17, 20, 21, 10mulgcld 18792 . . . . . . 7 (𝑅 ∈ Ring → (-1(.g𝑅)(1r𝑅)) ∈ (Base‘𝑅))
2319, 22eqeltrd 2838 . . . . . 6 (𝑅 ∈ Ring → (𝑌‘-1) ∈ (Base‘𝑅))
24233ad2ant1 1132 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘-1) ∈ (Base‘𝑅))
25 fveq2 6809 . . . . . 6 ((𝑆𝑄) = -1 → (𝑌‘(𝑆𝑄)) = (𝑌‘-1))
2625eleq1d 2822 . . . . 5 ((𝑆𝑄) = -1 → ((𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅) ↔ (𝑌‘-1) ∈ (Base‘𝑅)))
2724, 26syl5ibr 245 . . . 4 ((𝑆𝑄) = -1 → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅)))
2815, 27jaoi 854 . . 3 (((𝑆𝑄) = 1 ∨ (𝑆𝑄) = -1) → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅)))
295, 28syl 17 . 2 ((𝑆𝑄) ∈ {1, -1} → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅)))
304, 29mpcom 38 1 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844  w3a 1086   = wceq 1540  wcel 2105  {cpr 4571  cfv 6463  (class class class)co 7313  Fincfn 8779  1c1 10942  -cneg 11276  cz 12389  Basecbs 16979  .gcmg 18767  SymGrpcsymg 19041  pmSgncpsgn 19164  1rcur 19804  Ringcrg 19850  ℤRHomczrh 20772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018  ax-addf 11020  ax-mulf 11021
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-xor 1509  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-ot 4578  df-uni 4849  df-int 4891  df-iun 4937  df-iin 4938  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-se 5561  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-isom 6472  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-1st 7874  df-2nd 7875  df-tpos 8087  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-1o 8342  df-2o 8343  df-er 8544  df-map 8663  df-en 8780  df-dom 8781  df-sdom 8782  df-fin 8783  df-card 9765  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-div 11703  df-nn 12044  df-2 12106  df-3 12107  df-4 12108  df-5 12109  df-6 12110  df-7 12111  df-8 12112  df-9 12113  df-n0 12304  df-xnn0 12376  df-z 12390  df-dec 12508  df-uz 12653  df-rp 12801  df-fz 13310  df-fzo 13453  df-seq 13792  df-exp 13853  df-hash 14115  df-word 14287  df-lsw 14335  df-concat 14343  df-s1 14370  df-substr 14423  df-pfx 14453  df-splice 14532  df-reverse 14541  df-s2 14630  df-struct 16915  df-sets 16932  df-slot 16950  df-ndx 16962  df-base 16980  df-ress 17009  df-plusg 17042  df-mulr 17043  df-starv 17044  df-tset 17048  df-ple 17049  df-ds 17051  df-unif 17052  df-0g 17219  df-gsum 17220  df-mre 17362  df-mrc 17363  df-acs 17365  df-mgm 18393  df-sgrp 18442  df-mnd 18453  df-mhm 18497  df-submnd 18498  df-efmnd 18575  df-grp 18647  df-minusg 18648  df-mulg 18768  df-subg 18819  df-ghm 18899  df-gim 18942  df-oppg 19017  df-symg 19042  df-pmtr 19117  df-psgn 19166  df-cmn 19455  df-mgp 19788  df-ur 19805  df-ring 19852  df-cring 19853  df-rnghom 20026  df-subrg 20093  df-cnfld 20669  df-zring 20742  df-zrh 20776
This theorem is referenced by:  zrhcopsgnelbas  20871  m2detleib  21851  mdetpmtr1  31879
  Copyright terms: Public domain W3C validator