MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrhpsgnelbas Structured version   Visualization version   GIF version

Theorem zrhpsgnelbas 21531
Description: Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.)
Hypotheses
Ref Expression
zrhpsgnelbas.p 𝑃 = (Base‘(SymGrp‘𝑁))
zrhpsgnelbas.s 𝑆 = (pmSgn‘𝑁)
zrhpsgnelbas.y 𝑌 = (ℤRHom‘𝑅)
Assertion
Ref Expression
zrhpsgnelbas ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅))

Proof of Theorem zrhpsgnelbas
StepHypRef Expression
1 zrhpsgnelbas.p . . . 4 𝑃 = (Base‘(SymGrp‘𝑁))
2 zrhpsgnelbas.s . . . 4 𝑆 = (pmSgn‘𝑁)
31, 2psgnran 19427 . . 3 ((𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑆𝑄) ∈ {1, -1})
433adant1 1130 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑆𝑄) ∈ {1, -1})
5 elpri 4597 . . 3 ((𝑆𝑄) ∈ {1, -1} → ((𝑆𝑄) = 1 ∨ (𝑆𝑄) = -1))
6 zrhpsgnelbas.y . . . . . . . 8 𝑌 = (ℤRHom‘𝑅)
7 eqid 2731 . . . . . . . 8 (1r𝑅) = (1r𝑅)
86, 7zrh1 21449 . . . . . . 7 (𝑅 ∈ Ring → (𝑌‘1) = (1r𝑅))
9 eqid 2731 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
109, 7ringidcl 20183 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
118, 10eqeltrd 2831 . . . . . 6 (𝑅 ∈ Ring → (𝑌‘1) ∈ (Base‘𝑅))
12113ad2ant1 1133 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘1) ∈ (Base‘𝑅))
13 fveq2 6822 . . . . . 6 ((𝑆𝑄) = 1 → (𝑌‘(𝑆𝑄)) = (𝑌‘1))
1413eleq1d 2816 . . . . 5 ((𝑆𝑄) = 1 → ((𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅) ↔ (𝑌‘1) ∈ (Base‘𝑅)))
1512, 14imbitrrid 246 . . . 4 ((𝑆𝑄) = 1 → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅)))
16 neg1z 12508 . . . . . . . 8 -1 ∈ ℤ
17 eqid 2731 . . . . . . . . 9 (.g𝑅) = (.g𝑅)
186, 17, 7zrhmulg 21446 . . . . . . . 8 ((𝑅 ∈ Ring ∧ -1 ∈ ℤ) → (𝑌‘-1) = (-1(.g𝑅)(1r𝑅)))
1916, 18mpan2 691 . . . . . . 7 (𝑅 ∈ Ring → (𝑌‘-1) = (-1(.g𝑅)(1r𝑅)))
20 ringgrp 20156 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2116a1i 11 . . . . . . . 8 (𝑅 ∈ Ring → -1 ∈ ℤ)
229, 17, 20, 21, 10mulgcld 19009 . . . . . . 7 (𝑅 ∈ Ring → (-1(.g𝑅)(1r𝑅)) ∈ (Base‘𝑅))
2319, 22eqeltrd 2831 . . . . . 6 (𝑅 ∈ Ring → (𝑌‘-1) ∈ (Base‘𝑅))
24233ad2ant1 1133 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘-1) ∈ (Base‘𝑅))
25 fveq2 6822 . . . . . 6 ((𝑆𝑄) = -1 → (𝑌‘(𝑆𝑄)) = (𝑌‘-1))
2625eleq1d 2816 . . . . 5 ((𝑆𝑄) = -1 → ((𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅) ↔ (𝑌‘-1) ∈ (Base‘𝑅)))
2724, 26imbitrrid 246 . . . 4 ((𝑆𝑄) = -1 → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅)))
2815, 27jaoi 857 . . 3 (((𝑆𝑄) = 1 ∨ (𝑆𝑄) = -1) → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅)))
295, 28syl 17 . 2 ((𝑆𝑄) ∈ {1, -1} → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅)))
304, 29mpcom 38 1 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  w3a 1086   = wceq 1541  wcel 2111  {cpr 4575  cfv 6481  (class class class)co 7346  Fincfn 8869  1c1 11007  -cneg 11345  cz 12468  Basecbs 17120  .gcmg 18980  SymGrpcsymg 19281  pmSgncpsgn 19401  1rcur 20099  Ringcrg 20151  ℤRHomczrh 21436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14504  df-substr 14549  df-pfx 14579  df-splice 14657  df-reverse 14666  df-s2 14755  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-efmnd 18777  df-grp 18849  df-minusg 18850  df-mulg 18981  df-subg 19036  df-ghm 19125  df-gim 19171  df-oppg 19258  df-symg 19282  df-pmtr 19354  df-psgn 19403  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-cnfld 21292  df-zring 21384  df-zrh 21440
This theorem is referenced by:  zrhcopsgnelbas  21532  m2detleib  22546  mdetpmtr1  33836
  Copyright terms: Public domain W3C validator