![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zrhpsgnelbas | Structured version Visualization version GIF version |
Description: Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.) |
Ref | Expression |
---|---|
zrhpsgnelbas.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
zrhpsgnelbas.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
zrhpsgnelbas.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
Ref | Expression |
---|---|
zrhpsgnelbas | ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrhpsgnelbas.p | . . . 4 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
2 | zrhpsgnelbas.s | . . . 4 ⊢ 𝑆 = (pmSgn‘𝑁) | |
3 | 1, 2 | psgnran 19382 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) ∈ {1, -1}) |
4 | 3 | 3adant1 1130 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) ∈ {1, -1}) |
5 | elpri 4650 | . . 3 ⊢ ((𝑆‘𝑄) ∈ {1, -1} → ((𝑆‘𝑄) = 1 ∨ (𝑆‘𝑄) = -1)) | |
6 | zrhpsgnelbas.y | . . . . . . . 8 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
7 | eqid 2732 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
8 | 6, 7 | zrh1 21061 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝑌‘1) = (1r‘𝑅)) |
9 | eqid 2732 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
10 | 9, 7 | ringidcl 20082 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
11 | 8, 10 | eqeltrd 2833 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑌‘1) ∈ (Base‘𝑅)) |
12 | 11 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘1) ∈ (Base‘𝑅)) |
13 | fveq2 6891 | . . . . . 6 ⊢ ((𝑆‘𝑄) = 1 → (𝑌‘(𝑆‘𝑄)) = (𝑌‘1)) | |
14 | 13 | eleq1d 2818 | . . . . 5 ⊢ ((𝑆‘𝑄) = 1 → ((𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅) ↔ (𝑌‘1) ∈ (Base‘𝑅))) |
15 | 12, 14 | imbitrrid 245 | . . . 4 ⊢ ((𝑆‘𝑄) = 1 → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅))) |
16 | neg1z 12597 | . . . . . . . 8 ⊢ -1 ∈ ℤ | |
17 | eqid 2732 | . . . . . . . . 9 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
18 | 6, 17, 7 | zrhmulg 21058 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ -1 ∈ ℤ) → (𝑌‘-1) = (-1(.g‘𝑅)(1r‘𝑅))) |
19 | 16, 18 | mpan2 689 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝑌‘-1) = (-1(.g‘𝑅)(1r‘𝑅))) |
20 | ringgrp 20060 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
21 | 16 | a1i 11 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → -1 ∈ ℤ) |
22 | 9, 17, 20, 21, 10 | mulgcld 18975 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (-1(.g‘𝑅)(1r‘𝑅)) ∈ (Base‘𝑅)) |
23 | 19, 22 | eqeltrd 2833 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑌‘-1) ∈ (Base‘𝑅)) |
24 | 23 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘-1) ∈ (Base‘𝑅)) |
25 | fveq2 6891 | . . . . . 6 ⊢ ((𝑆‘𝑄) = -1 → (𝑌‘(𝑆‘𝑄)) = (𝑌‘-1)) | |
26 | 25 | eleq1d 2818 | . . . . 5 ⊢ ((𝑆‘𝑄) = -1 → ((𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅) ↔ (𝑌‘-1) ∈ (Base‘𝑅))) |
27 | 24, 26 | imbitrrid 245 | . . . 4 ⊢ ((𝑆‘𝑄) = -1 → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅))) |
28 | 15, 27 | jaoi 855 | . . 3 ⊢ (((𝑆‘𝑄) = 1 ∨ (𝑆‘𝑄) = -1) → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅))) |
29 | 5, 28 | syl 17 | . 2 ⊢ ((𝑆‘𝑄) ∈ {1, -1} → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅))) |
30 | 4, 29 | mpcom 38 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 {cpr 4630 ‘cfv 6543 (class class class)co 7408 Fincfn 8938 1c1 11110 -cneg 11444 ℤcz 12557 Basecbs 17143 .gcmg 18949 SymGrpcsymg 19233 pmSgncpsgn 19356 1rcur 20003 Ringcrg 20055 ℤRHomczrh 21048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-xor 1510 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-xnn0 12544 df-z 12558 df-dec 12677 df-uz 12822 df-rp 12974 df-fz 13484 df-fzo 13627 df-seq 13966 df-exp 14027 df-hash 14290 df-word 14464 df-lsw 14512 df-concat 14520 df-s1 14545 df-substr 14590 df-pfx 14620 df-splice 14699 df-reverse 14708 df-s2 14798 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17386 df-gsum 17387 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-submnd 18671 df-efmnd 18749 df-grp 18821 df-minusg 18822 df-mulg 18950 df-subg 19002 df-ghm 19089 df-gim 19132 df-oppg 19209 df-symg 19234 df-pmtr 19309 df-psgn 19358 df-cmn 19649 df-mgp 19987 df-ur 20004 df-ring 20057 df-cring 20058 df-rnghom 20250 df-subrg 20316 df-cnfld 20944 df-zring 21017 df-zrh 21052 |
This theorem is referenced by: zrhcopsgnelbas 21147 m2detleib 22132 mdetpmtr1 32798 |
Copyright terms: Public domain | W3C validator |