MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrhpsgnelbas Structured version   Visualization version   GIF version

Theorem zrhpsgnelbas 21530
Description: Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.)
Hypotheses
Ref Expression
zrhpsgnelbas.p 𝑃 = (Base‘(SymGrp‘𝑁))
zrhpsgnelbas.s 𝑆 = (pmSgn‘𝑁)
zrhpsgnelbas.y 𝑌 = (ℤRHom‘𝑅)
Assertion
Ref Expression
zrhpsgnelbas ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅))

Proof of Theorem zrhpsgnelbas
StepHypRef Expression
1 zrhpsgnelbas.p . . . 4 𝑃 = (Base‘(SymGrp‘𝑁))
2 zrhpsgnelbas.s . . . 4 𝑆 = (pmSgn‘𝑁)
31, 2psgnran 19474 . . 3 ((𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑆𝑄) ∈ {1, -1})
433adant1 1127 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑆𝑄) ∈ {1, -1})
5 elpri 4647 . . 3 ((𝑆𝑄) ∈ {1, -1} → ((𝑆𝑄) = 1 ∨ (𝑆𝑄) = -1))
6 zrhpsgnelbas.y . . . . . . . 8 𝑌 = (ℤRHom‘𝑅)
7 eqid 2725 . . . . . . . 8 (1r𝑅) = (1r𝑅)
86, 7zrh1 21442 . . . . . . 7 (𝑅 ∈ Ring → (𝑌‘1) = (1r𝑅))
9 eqid 2725 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
109, 7ringidcl 20206 . . . . . . 7 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
118, 10eqeltrd 2825 . . . . . 6 (𝑅 ∈ Ring → (𝑌‘1) ∈ (Base‘𝑅))
12113ad2ant1 1130 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘1) ∈ (Base‘𝑅))
13 fveq2 6892 . . . . . 6 ((𝑆𝑄) = 1 → (𝑌‘(𝑆𝑄)) = (𝑌‘1))
1413eleq1d 2810 . . . . 5 ((𝑆𝑄) = 1 → ((𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅) ↔ (𝑌‘1) ∈ (Base‘𝑅)))
1512, 14imbitrrid 245 . . . 4 ((𝑆𝑄) = 1 → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅)))
16 neg1z 12628 . . . . . . . 8 -1 ∈ ℤ
17 eqid 2725 . . . . . . . . 9 (.g𝑅) = (.g𝑅)
186, 17, 7zrhmulg 21439 . . . . . . . 8 ((𝑅 ∈ Ring ∧ -1 ∈ ℤ) → (𝑌‘-1) = (-1(.g𝑅)(1r𝑅)))
1916, 18mpan2 689 . . . . . . 7 (𝑅 ∈ Ring → (𝑌‘-1) = (-1(.g𝑅)(1r𝑅)))
20 ringgrp 20182 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2116a1i 11 . . . . . . . 8 (𝑅 ∈ Ring → -1 ∈ ℤ)
229, 17, 20, 21, 10mulgcld 19055 . . . . . . 7 (𝑅 ∈ Ring → (-1(.g𝑅)(1r𝑅)) ∈ (Base‘𝑅))
2319, 22eqeltrd 2825 . . . . . 6 (𝑅 ∈ Ring → (𝑌‘-1) ∈ (Base‘𝑅))
24233ad2ant1 1130 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘-1) ∈ (Base‘𝑅))
25 fveq2 6892 . . . . . 6 ((𝑆𝑄) = -1 → (𝑌‘(𝑆𝑄)) = (𝑌‘-1))
2625eleq1d 2810 . . . . 5 ((𝑆𝑄) = -1 → ((𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅) ↔ (𝑌‘-1) ∈ (Base‘𝑅)))
2724, 26imbitrrid 245 . . . 4 ((𝑆𝑄) = -1 → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅)))
2815, 27jaoi 855 . . 3 (((𝑆𝑄) = 1 ∨ (𝑆𝑄) = -1) → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅)))
295, 28syl 17 . 2 ((𝑆𝑄) ∈ {1, -1} → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅)))
304, 29mpcom 38 1 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑌‘(𝑆𝑄)) ∈ (Base‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 845  w3a 1084   = wceq 1533  wcel 2098  {cpr 4626  cfv 6543  (class class class)co 7416  Fincfn 8962  1c1 11139  -cneg 11475  cz 12588  Basecbs 17179  .gcmg 19027  SymGrpcsymg 19325  pmSgncpsgn 19448  1rcur 20125  Ringcrg 20177  ℤRHomczrh 21429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-addf 11217  ax-mulf 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-xor 1505  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8723  df-map 8845  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-xnn0 12575  df-z 12589  df-dec 12708  df-uz 12853  df-rp 13007  df-fz 13517  df-fzo 13660  df-seq 13999  df-exp 14059  df-hash 14322  df-word 14497  df-lsw 14545  df-concat 14553  df-s1 14578  df-substr 14623  df-pfx 14653  df-splice 14732  df-reverse 14741  df-s2 14831  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-starv 17247  df-tset 17251  df-ple 17252  df-ds 17254  df-unif 17255  df-0g 17422  df-gsum 17423  df-mre 17565  df-mrc 17566  df-acs 17568  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-mhm 18739  df-submnd 18740  df-efmnd 18825  df-grp 18897  df-minusg 18898  df-mulg 19028  df-subg 19082  df-ghm 19172  df-gim 19217  df-oppg 19301  df-symg 19326  df-pmtr 19401  df-psgn 19450  df-cmn 19741  df-abl 19742  df-mgp 20079  df-rng 20097  df-ur 20126  df-ring 20179  df-cring 20180  df-rhm 20415  df-subrng 20487  df-subrg 20512  df-cnfld 21284  df-zring 21377  df-zrh 21433
This theorem is referenced by:  zrhcopsgnelbas  21531  m2detleib  22551  mdetpmtr1  33481
  Copyright terms: Public domain W3C validator