Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zrhpsgnelbas | Structured version Visualization version GIF version |
Description: Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.) |
Ref | Expression |
---|---|
zrhpsgnelbas.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
zrhpsgnelbas.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
zrhpsgnelbas.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
Ref | Expression |
---|---|
zrhpsgnelbas | ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrhpsgnelbas.p | . . . 4 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
2 | zrhpsgnelbas.s | . . . 4 ⊢ 𝑆 = (pmSgn‘𝑁) | |
3 | 1, 2 | psgnran 19190 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) ∈ {1, -1}) |
4 | 3 | 3adant1 1129 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) ∈ {1, -1}) |
5 | elpri 4591 | . . 3 ⊢ ((𝑆‘𝑄) ∈ {1, -1} → ((𝑆‘𝑄) = 1 ∨ (𝑆‘𝑄) = -1)) | |
6 | zrhpsgnelbas.y | . . . . . . . 8 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
7 | eqid 2737 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
8 | 6, 7 | zrh1 20785 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝑌‘1) = (1r‘𝑅)) |
9 | eqid 2737 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
10 | 9, 7 | ringidcl 19874 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
11 | 8, 10 | eqeltrd 2838 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑌‘1) ∈ (Base‘𝑅)) |
12 | 11 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘1) ∈ (Base‘𝑅)) |
13 | fveq2 6809 | . . . . . 6 ⊢ ((𝑆‘𝑄) = 1 → (𝑌‘(𝑆‘𝑄)) = (𝑌‘1)) | |
14 | 13 | eleq1d 2822 | . . . . 5 ⊢ ((𝑆‘𝑄) = 1 → ((𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅) ↔ (𝑌‘1) ∈ (Base‘𝑅))) |
15 | 12, 14 | syl5ibr 245 | . . . 4 ⊢ ((𝑆‘𝑄) = 1 → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅))) |
16 | neg1z 12426 | . . . . . . . 8 ⊢ -1 ∈ ℤ | |
17 | eqid 2737 | . . . . . . . . 9 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
18 | 6, 17, 7 | zrhmulg 20782 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ -1 ∈ ℤ) → (𝑌‘-1) = (-1(.g‘𝑅)(1r‘𝑅))) |
19 | 16, 18 | mpan2 688 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝑌‘-1) = (-1(.g‘𝑅)(1r‘𝑅))) |
20 | ringgrp 19855 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
21 | 16 | a1i 11 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → -1 ∈ ℤ) |
22 | 9, 17, 20, 21, 10 | mulgcld 18792 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (-1(.g‘𝑅)(1r‘𝑅)) ∈ (Base‘𝑅)) |
23 | 19, 22 | eqeltrd 2838 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑌‘-1) ∈ (Base‘𝑅)) |
24 | 23 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘-1) ∈ (Base‘𝑅)) |
25 | fveq2 6809 | . . . . . 6 ⊢ ((𝑆‘𝑄) = -1 → (𝑌‘(𝑆‘𝑄)) = (𝑌‘-1)) | |
26 | 25 | eleq1d 2822 | . . . . 5 ⊢ ((𝑆‘𝑄) = -1 → ((𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅) ↔ (𝑌‘-1) ∈ (Base‘𝑅))) |
27 | 24, 26 | syl5ibr 245 | . . . 4 ⊢ ((𝑆‘𝑄) = -1 → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅))) |
28 | 15, 27 | jaoi 854 | . . 3 ⊢ (((𝑆‘𝑄) = 1 ∨ (𝑆‘𝑄) = -1) → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅))) |
29 | 5, 28 | syl 17 | . 2 ⊢ ((𝑆‘𝑄) ∈ {1, -1} → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅))) |
30 | 4, 29 | mpcom 38 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 {cpr 4571 ‘cfv 6463 (class class class)co 7313 Fincfn 8779 1c1 10942 -cneg 11276 ℤcz 12389 Basecbs 16979 .gcmg 18767 SymGrpcsymg 19041 pmSgncpsgn 19164 1rcur 19804 Ringcrg 19850 ℤRHomczrh 20772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 ax-addf 11020 ax-mulf 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-xor 1509 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-ot 4578 df-uni 4849 df-int 4891 df-iun 4937 df-iin 4938 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-se 5561 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-isom 6472 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-tpos 8087 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-1o 8342 df-2o 8343 df-er 8544 df-map 8663 df-en 8780 df-dom 8781 df-sdom 8782 df-fin 8783 df-card 9765 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-div 11703 df-nn 12044 df-2 12106 df-3 12107 df-4 12108 df-5 12109 df-6 12110 df-7 12111 df-8 12112 df-9 12113 df-n0 12304 df-xnn0 12376 df-z 12390 df-dec 12508 df-uz 12653 df-rp 12801 df-fz 13310 df-fzo 13453 df-seq 13792 df-exp 13853 df-hash 14115 df-word 14287 df-lsw 14335 df-concat 14343 df-s1 14370 df-substr 14423 df-pfx 14453 df-splice 14532 df-reverse 14541 df-s2 14630 df-struct 16915 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ress 17009 df-plusg 17042 df-mulr 17043 df-starv 17044 df-tset 17048 df-ple 17049 df-ds 17051 df-unif 17052 df-0g 17219 df-gsum 17220 df-mre 17362 df-mrc 17363 df-acs 17365 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-mhm 18497 df-submnd 18498 df-efmnd 18575 df-grp 18647 df-minusg 18648 df-mulg 18768 df-subg 18819 df-ghm 18899 df-gim 18942 df-oppg 19017 df-symg 19042 df-pmtr 19117 df-psgn 19166 df-cmn 19455 df-mgp 19788 df-ur 19805 df-ring 19852 df-cring 19853 df-rnghom 20026 df-subrg 20093 df-cnfld 20669 df-zring 20742 df-zrh 20776 |
This theorem is referenced by: zrhcopsgnelbas 20871 m2detleib 21851 mdetpmtr1 31879 |
Copyright terms: Public domain | W3C validator |