| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zrhpsgnelbas | Structured version Visualization version GIF version | ||
| Description: Embedding of permutation signs into a ring results in an element of the ring. (Contributed by AV, 1-Jan-2019.) |
| Ref | Expression |
|---|---|
| zrhpsgnelbas.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| zrhpsgnelbas.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
| zrhpsgnelbas.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
| Ref | Expression |
|---|---|
| zrhpsgnelbas | ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhpsgnelbas.p | . . . 4 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
| 2 | zrhpsgnelbas.s | . . . 4 ⊢ 𝑆 = (pmSgn‘𝑁) | |
| 3 | 1, 2 | psgnran 19452 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) ∈ {1, -1}) |
| 4 | 3 | 3adant1 1130 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) ∈ {1, -1}) |
| 5 | elpri 4616 | . . 3 ⊢ ((𝑆‘𝑄) ∈ {1, -1} → ((𝑆‘𝑄) = 1 ∨ (𝑆‘𝑄) = -1)) | |
| 6 | zrhpsgnelbas.y | . . . . . . . 8 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
| 7 | eqid 2730 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 8 | 6, 7 | zrh1 21429 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝑌‘1) = (1r‘𝑅)) |
| 9 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 10 | 9, 7 | ringidcl 20181 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
| 11 | 8, 10 | eqeltrd 2829 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑌‘1) ∈ (Base‘𝑅)) |
| 12 | 11 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘1) ∈ (Base‘𝑅)) |
| 13 | fveq2 6861 | . . . . . 6 ⊢ ((𝑆‘𝑄) = 1 → (𝑌‘(𝑆‘𝑄)) = (𝑌‘1)) | |
| 14 | 13 | eleq1d 2814 | . . . . 5 ⊢ ((𝑆‘𝑄) = 1 → ((𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅) ↔ (𝑌‘1) ∈ (Base‘𝑅))) |
| 15 | 12, 14 | imbitrrid 246 | . . . 4 ⊢ ((𝑆‘𝑄) = 1 → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅))) |
| 16 | neg1z 12576 | . . . . . . . 8 ⊢ -1 ∈ ℤ | |
| 17 | eqid 2730 | . . . . . . . . 9 ⊢ (.g‘𝑅) = (.g‘𝑅) | |
| 18 | 6, 17, 7 | zrhmulg 21426 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ -1 ∈ ℤ) → (𝑌‘-1) = (-1(.g‘𝑅)(1r‘𝑅))) |
| 19 | 16, 18 | mpan2 691 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝑌‘-1) = (-1(.g‘𝑅)(1r‘𝑅))) |
| 20 | ringgrp 20154 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 21 | 16 | a1i 11 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → -1 ∈ ℤ) |
| 22 | 9, 17, 20, 21, 10 | mulgcld 19035 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (-1(.g‘𝑅)(1r‘𝑅)) ∈ (Base‘𝑅)) |
| 23 | 19, 22 | eqeltrd 2829 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (𝑌‘-1) ∈ (Base‘𝑅)) |
| 24 | 23 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘-1) ∈ (Base‘𝑅)) |
| 25 | fveq2 6861 | . . . . . 6 ⊢ ((𝑆‘𝑄) = -1 → (𝑌‘(𝑆‘𝑄)) = (𝑌‘-1)) | |
| 26 | 25 | eleq1d 2814 | . . . . 5 ⊢ ((𝑆‘𝑄) = -1 → ((𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅) ↔ (𝑌‘-1) ∈ (Base‘𝑅))) |
| 27 | 24, 26 | imbitrrid 246 | . . . 4 ⊢ ((𝑆‘𝑄) = -1 → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅))) |
| 28 | 15, 27 | jaoi 857 | . . 3 ⊢ (((𝑆‘𝑄) = 1 ∨ (𝑆‘𝑄) = -1) → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅))) |
| 29 | 5, 28 | syl 17 | . 2 ⊢ ((𝑆‘𝑄) ∈ {1, -1} → ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅))) |
| 30 | 4, 29 | mpcom 38 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑌‘(𝑆‘𝑄)) ∈ (Base‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cpr 4594 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 1c1 11076 -cneg 11413 ℤcz 12536 Basecbs 17186 .gcmg 19006 SymGrpcsymg 19306 pmSgncpsgn 19426 1rcur 20097 Ringcrg 20149 ℤRHomczrh 21416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-xnn0 12523 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-word 14486 df-lsw 14535 df-concat 14543 df-s1 14568 df-substr 14613 df-pfx 14643 df-splice 14722 df-reverse 14731 df-s2 14821 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17411 df-gsum 17412 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-efmnd 18803 df-grp 18875 df-minusg 18876 df-mulg 19007 df-subg 19062 df-ghm 19152 df-gim 19198 df-oppg 19285 df-symg 19307 df-pmtr 19379 df-psgn 19428 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-rhm 20388 df-subrng 20462 df-subrg 20486 df-cnfld 21272 df-zring 21364 df-zrh 21420 |
| This theorem is referenced by: zrhcopsgnelbas 21511 m2detleib 22525 mdetpmtr1 33820 |
| Copyright terms: Public domain | W3C validator |