![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem9 | Structured version Visualization version GIF version |
Description: If 𝐾 divides 𝑁 but 𝐾 does not divide 𝑀 then 𝑀 + 𝑁 cannot be zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem9.k | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
etransclem9.kn0 | ⊢ (𝜑 → 𝐾 ≠ 0) |
etransclem9.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
etransclem9.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
etransclem9.km | ⊢ (𝜑 → ¬ 𝐾 ∥ 𝑀) |
etransclem9.kn | ⊢ (𝜑 → 𝐾 ∥ 𝑁) |
Ref | Expression |
---|---|
etransclem9 | ⊢ (𝜑 → (𝑀 + 𝑁) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etransclem9.km | . . . 4 ⊢ (𝜑 → ¬ 𝐾 ∥ 𝑀) | |
2 | etransclem9.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
3 | etransclem9.kn0 | . . . . 5 ⊢ (𝜑 → 𝐾 ≠ 0) | |
4 | etransclem9.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | dvdsval2 16200 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝐾 ∥ 𝑀 ↔ (𝑀 / 𝐾) ∈ ℤ)) | |
6 | 2, 3, 4, 5 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → (𝐾 ∥ 𝑀 ↔ (𝑀 / 𝐾) ∈ ℤ)) |
7 | 1, 6 | mtbid 324 | . . 3 ⊢ (𝜑 → ¬ (𝑀 / 𝐾) ∈ ℤ) |
8 | df-neg 11447 | . . . . . . 7 ⊢ -𝑁 = (0 − 𝑁) | |
9 | 8 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → -𝑁 = (0 − 𝑁)) |
10 | oveq1 7416 | . . . . . . . 8 ⊢ ((𝑀 + 𝑁) = 0 → ((𝑀 + 𝑁) − 𝑁) = (0 − 𝑁)) | |
11 | 10 | eqcomd 2739 | . . . . . . 7 ⊢ ((𝑀 + 𝑁) = 0 → (0 − 𝑁) = ((𝑀 + 𝑁) − 𝑁)) |
12 | 11 | adantl 483 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (0 − 𝑁) = ((𝑀 + 𝑁) − 𝑁)) |
13 | 4 | zcnd 12667 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
14 | etransclem9.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
15 | 14 | zcnd 12667 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
16 | 13, 15 | pncand 11572 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 + 𝑁) − 𝑁) = 𝑀) |
17 | 16 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) |
18 | 9, 12, 17 | 3eqtrrd 2778 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → 𝑀 = -𝑁) |
19 | 18 | oveq1d 7424 | . . . 4 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (𝑀 / 𝐾) = (-𝑁 / 𝐾)) |
20 | etransclem9.kn | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∥ 𝑁) | |
21 | dvdsnegb 16217 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ 𝑁 ↔ 𝐾 ∥ -𝑁)) | |
22 | 2, 14, 21 | syl2anc 585 | . . . . . . 7 ⊢ (𝜑 → (𝐾 ∥ 𝑁 ↔ 𝐾 ∥ -𝑁)) |
23 | 20, 22 | mpbid 231 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∥ -𝑁) |
24 | 14 | znegcld 12668 | . . . . . . 7 ⊢ (𝜑 → -𝑁 ∈ ℤ) |
25 | dvdsval2 16200 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ∧ -𝑁 ∈ ℤ) → (𝐾 ∥ -𝑁 ↔ (-𝑁 / 𝐾) ∈ ℤ)) | |
26 | 2, 3, 24, 25 | syl3anc 1372 | . . . . . 6 ⊢ (𝜑 → (𝐾 ∥ -𝑁 ↔ (-𝑁 / 𝐾) ∈ ℤ)) |
27 | 23, 26 | mpbid 231 | . . . . 5 ⊢ (𝜑 → (-𝑁 / 𝐾) ∈ ℤ) |
28 | 27 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (-𝑁 / 𝐾) ∈ ℤ) |
29 | 19, 28 | eqeltrd 2834 | . . 3 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (𝑀 / 𝐾) ∈ ℤ) |
30 | 7, 29 | mtand 815 | . 2 ⊢ (𝜑 → ¬ (𝑀 + 𝑁) = 0) |
31 | 30 | neqned 2948 | 1 ⊢ (𝜑 → (𝑀 + 𝑁) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 class class class wbr 5149 (class class class)co 7409 0cc0 11110 + caddc 11113 − cmin 11444 -cneg 11445 / cdiv 11871 ℤcz 12558 ∥ cdvds 16197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-z 12559 df-dvds 16198 |
This theorem is referenced by: etransclem44 44994 |
Copyright terms: Public domain | W3C validator |