Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem9 Structured version   Visualization version   GIF version

Theorem etransclem9 43738
Description: If 𝐾 divides 𝑁 but 𝐾 does not divide 𝑀 then 𝑀 + 𝑁 cannot be zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem9.k (𝜑𝐾 ∈ ℤ)
etransclem9.kn0 (𝜑𝐾 ≠ 0)
etransclem9.m (𝜑𝑀 ∈ ℤ)
etransclem9.n (𝜑𝑁 ∈ ℤ)
etransclem9.km (𝜑 → ¬ 𝐾𝑀)
etransclem9.kn (𝜑𝐾𝑁)
Assertion
Ref Expression
etransclem9 (𝜑 → (𝑀 + 𝑁) ≠ 0)

Proof of Theorem etransclem9
StepHypRef Expression
1 etransclem9.km . . . 4 (𝜑 → ¬ 𝐾𝑀)
2 etransclem9.k . . . . 5 (𝜑𝐾 ∈ ℤ)
3 etransclem9.kn0 . . . . 5 (𝜑𝐾 ≠ 0)
4 etransclem9.m . . . . 5 (𝜑𝑀 ∈ ℤ)
5 dvdsval2 15947 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝐾𝑀 ↔ (𝑀 / 𝐾) ∈ ℤ))
62, 3, 4, 5syl3anc 1369 . . . 4 (𝜑 → (𝐾𝑀 ↔ (𝑀 / 𝐾) ∈ ℤ))
71, 6mtbid 323 . . 3 (𝜑 → ¬ (𝑀 / 𝐾) ∈ ℤ)
8 df-neg 11191 . . . . . . 7 -𝑁 = (0 − 𝑁)
98a1i 11 . . . . . 6 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → -𝑁 = (0 − 𝑁))
10 oveq1 7275 . . . . . . . 8 ((𝑀 + 𝑁) = 0 → ((𝑀 + 𝑁) − 𝑁) = (0 − 𝑁))
1110eqcomd 2745 . . . . . . 7 ((𝑀 + 𝑁) = 0 → (0 − 𝑁) = ((𝑀 + 𝑁) − 𝑁))
1211adantl 481 . . . . . 6 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (0 − 𝑁) = ((𝑀 + 𝑁) − 𝑁))
134zcnd 12409 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
14 etransclem9.n . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
1514zcnd 12409 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
1613, 15pncand 11316 . . . . . . 7 (𝜑 → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
1716adantr 480 . . . . . 6 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
189, 12, 173eqtrrd 2784 . . . . 5 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → 𝑀 = -𝑁)
1918oveq1d 7283 . . . 4 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (𝑀 / 𝐾) = (-𝑁 / 𝐾))
20 etransclem9.kn . . . . . . 7 (𝜑𝐾𝑁)
21 dvdsnegb 15964 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑁𝐾 ∥ -𝑁))
222, 14, 21syl2anc 583 . . . . . . 7 (𝜑 → (𝐾𝑁𝐾 ∥ -𝑁))
2320, 22mpbid 231 . . . . . 6 (𝜑𝐾 ∥ -𝑁)
2414znegcld 12410 . . . . . . 7 (𝜑 → -𝑁 ∈ ℤ)
25 dvdsval2 15947 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ∧ -𝑁 ∈ ℤ) → (𝐾 ∥ -𝑁 ↔ (-𝑁 / 𝐾) ∈ ℤ))
262, 3, 24, 25syl3anc 1369 . . . . . 6 (𝜑 → (𝐾 ∥ -𝑁 ↔ (-𝑁 / 𝐾) ∈ ℤ))
2723, 26mpbid 231 . . . . 5 (𝜑 → (-𝑁 / 𝐾) ∈ ℤ)
2827adantr 480 . . . 4 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (-𝑁 / 𝐾) ∈ ℤ)
2919, 28eqeltrd 2840 . . 3 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (𝑀 / 𝐾) ∈ ℤ)
307, 29mtand 812 . 2 (𝜑 → ¬ (𝑀 + 𝑁) = 0)
3130neqned 2951 1 (𝜑 → (𝑀 + 𝑁) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wne 2944   class class class wbr 5078  (class class class)co 7268  0cc0 10855   + caddc 10858  cmin 11188  -cneg 11189   / cdiv 11615  cz 12302  cdvds 15944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-z 12303  df-dvds 15945
This theorem is referenced by:  etransclem44  43773
  Copyright terms: Public domain W3C validator