Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem9 Structured version   Visualization version   GIF version

Theorem etransclem9 41391
Description: If 𝐾 divides 𝑁 but 𝐾 does not divide 𝑀 then 𝑀 + 𝑁 cannot be zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem9.k (𝜑𝐾 ∈ ℤ)
etransclem9.kn0 (𝜑𝐾 ≠ 0)
etransclem9.m (𝜑𝑀 ∈ ℤ)
etransclem9.n (𝜑𝑁 ∈ ℤ)
etransclem9.km (𝜑 → ¬ 𝐾𝑀)
etransclem9.kn (𝜑𝐾𝑁)
Assertion
Ref Expression
etransclem9 (𝜑 → (𝑀 + 𝑁) ≠ 0)

Proof of Theorem etransclem9
StepHypRef Expression
1 etransclem9.km . . . 4 (𝜑 → ¬ 𝐾𝑀)
2 etransclem9.k . . . . 5 (𝜑𝐾 ∈ ℤ)
3 etransclem9.kn0 . . . . 5 (𝜑𝐾 ≠ 0)
4 etransclem9.m . . . . 5 (𝜑𝑀 ∈ ℤ)
5 dvdsval2 15390 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝐾𝑀 ↔ (𝑀 / 𝐾) ∈ ℤ))
62, 3, 4, 5syl3anc 1439 . . . 4 (𝜑 → (𝐾𝑀 ↔ (𝑀 / 𝐾) ∈ ℤ))
71, 6mtbid 316 . . 3 (𝜑 → ¬ (𝑀 / 𝐾) ∈ ℤ)
8 df-neg 10609 . . . . . . 7 -𝑁 = (0 − 𝑁)
98a1i 11 . . . . . 6 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → -𝑁 = (0 − 𝑁))
10 oveq1 6929 . . . . . . . 8 ((𝑀 + 𝑁) = 0 → ((𝑀 + 𝑁) − 𝑁) = (0 − 𝑁))
1110eqcomd 2784 . . . . . . 7 ((𝑀 + 𝑁) = 0 → (0 − 𝑁) = ((𝑀 + 𝑁) − 𝑁))
1211adantl 475 . . . . . 6 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (0 − 𝑁) = ((𝑀 + 𝑁) − 𝑁))
134zcnd 11835 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
14 etransclem9.n . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
1514zcnd 11835 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
1613, 15pncand 10735 . . . . . . 7 (𝜑 → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
1716adantr 474 . . . . . 6 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
189, 12, 173eqtrrd 2819 . . . . 5 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → 𝑀 = -𝑁)
1918oveq1d 6937 . . . 4 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (𝑀 / 𝐾) = (-𝑁 / 𝐾))
20 etransclem9.kn . . . . . . 7 (𝜑𝐾𝑁)
21 dvdsnegb 15406 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑁𝐾 ∥ -𝑁))
222, 14, 21syl2anc 579 . . . . . . 7 (𝜑 → (𝐾𝑁𝐾 ∥ -𝑁))
2320, 22mpbid 224 . . . . . 6 (𝜑𝐾 ∥ -𝑁)
2414znegcld 11836 . . . . . . 7 (𝜑 → -𝑁 ∈ ℤ)
25 dvdsval2 15390 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ∧ -𝑁 ∈ ℤ) → (𝐾 ∥ -𝑁 ↔ (-𝑁 / 𝐾) ∈ ℤ))
262, 3, 24, 25syl3anc 1439 . . . . . 6 (𝜑 → (𝐾 ∥ -𝑁 ↔ (-𝑁 / 𝐾) ∈ ℤ))
2723, 26mpbid 224 . . . . 5 (𝜑 → (-𝑁 / 𝐾) ∈ ℤ)
2827adantr 474 . . . 4 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (-𝑁 / 𝐾) ∈ ℤ)
2919, 28eqeltrd 2859 . . 3 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (𝑀 / 𝐾) ∈ ℤ)
307, 29mtand 806 . 2 (𝜑 → ¬ (𝑀 + 𝑁) = 0)
3130neqned 2976 1 (𝜑 → (𝑀 + 𝑁) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wne 2969   class class class wbr 4886  (class class class)co 6922  0cc0 10272   + caddc 10275  cmin 10606  -cneg 10607   / cdiv 11032  cz 11728  cdvds 15387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-z 11729  df-dvds 15388
This theorem is referenced by:  etransclem44  41426
  Copyright terms: Public domain W3C validator