|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem9 | Structured version Visualization version GIF version | ||
| Description: If 𝐾 divides 𝑁 but 𝐾 does not divide 𝑀 then 𝑀 + 𝑁 cannot be zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.) | 
| Ref | Expression | 
|---|---|
| etransclem9.k | ⊢ (𝜑 → 𝐾 ∈ ℤ) | 
| etransclem9.kn0 | ⊢ (𝜑 → 𝐾 ≠ 0) | 
| etransclem9.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| etransclem9.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| etransclem9.km | ⊢ (𝜑 → ¬ 𝐾 ∥ 𝑀) | 
| etransclem9.kn | ⊢ (𝜑 → 𝐾 ∥ 𝑁) | 
| Ref | Expression | 
|---|---|
| etransclem9 | ⊢ (𝜑 → (𝑀 + 𝑁) ≠ 0) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | etransclem9.km | . . . 4 ⊢ (𝜑 → ¬ 𝐾 ∥ 𝑀) | |
| 2 | etransclem9.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 3 | etransclem9.kn0 | . . . . 5 ⊢ (𝜑 → 𝐾 ≠ 0) | |
| 4 | etransclem9.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 5 | dvdsval2 16294 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝐾 ∥ 𝑀 ↔ (𝑀 / 𝐾) ∈ ℤ)) | |
| 6 | 2, 3, 4, 5 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → (𝐾 ∥ 𝑀 ↔ (𝑀 / 𝐾) ∈ ℤ)) | 
| 7 | 1, 6 | mtbid 324 | . . 3 ⊢ (𝜑 → ¬ (𝑀 / 𝐾) ∈ ℤ) | 
| 8 | df-neg 11496 | . . . . . . 7 ⊢ -𝑁 = (0 − 𝑁) | |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → -𝑁 = (0 − 𝑁)) | 
| 10 | oveq1 7439 | . . . . . . . 8 ⊢ ((𝑀 + 𝑁) = 0 → ((𝑀 + 𝑁) − 𝑁) = (0 − 𝑁)) | |
| 11 | 10 | eqcomd 2742 | . . . . . . 7 ⊢ ((𝑀 + 𝑁) = 0 → (0 − 𝑁) = ((𝑀 + 𝑁) − 𝑁)) | 
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (0 − 𝑁) = ((𝑀 + 𝑁) − 𝑁)) | 
| 13 | 4 | zcnd 12725 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℂ) | 
| 14 | etransclem9.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 15 | 14 | zcnd 12725 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℂ) | 
| 16 | 13, 15 | pncand 11622 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 + 𝑁) − 𝑁) = 𝑀) | 
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) | 
| 18 | 9, 12, 17 | 3eqtrrd 2781 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → 𝑀 = -𝑁) | 
| 19 | 18 | oveq1d 7447 | . . . 4 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (𝑀 / 𝐾) = (-𝑁 / 𝐾)) | 
| 20 | etransclem9.kn | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∥ 𝑁) | |
| 21 | dvdsnegb 16312 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ 𝑁 ↔ 𝐾 ∥ -𝑁)) | |
| 22 | 2, 14, 21 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝐾 ∥ 𝑁 ↔ 𝐾 ∥ -𝑁)) | 
| 23 | 20, 22 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∥ -𝑁) | 
| 24 | 14 | znegcld 12726 | . . . . . . 7 ⊢ (𝜑 → -𝑁 ∈ ℤ) | 
| 25 | dvdsval2 16294 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ∧ -𝑁 ∈ ℤ) → (𝐾 ∥ -𝑁 ↔ (-𝑁 / 𝐾) ∈ ℤ)) | |
| 26 | 2, 3, 24, 25 | syl3anc 1372 | . . . . . 6 ⊢ (𝜑 → (𝐾 ∥ -𝑁 ↔ (-𝑁 / 𝐾) ∈ ℤ)) | 
| 27 | 23, 26 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (-𝑁 / 𝐾) ∈ ℤ) | 
| 28 | 27 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (-𝑁 / 𝐾) ∈ ℤ) | 
| 29 | 19, 28 | eqeltrd 2840 | . . 3 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (𝑀 / 𝐾) ∈ ℤ) | 
| 30 | 7, 29 | mtand 815 | . 2 ⊢ (𝜑 → ¬ (𝑀 + 𝑁) = 0) | 
| 31 | 30 | neqned 2946 | 1 ⊢ (𝜑 → (𝑀 + 𝑁) ≠ 0) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 class class class wbr 5142 (class class class)co 7432 0cc0 11156 + caddc 11159 − cmin 11493 -cneg 11494 / cdiv 11921 ℤcz 12615 ∥ cdvds 16291 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-z 12616 df-dvds 16292 | 
| This theorem is referenced by: etransclem44 46298 | 
| Copyright terms: Public domain | W3C validator |