Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem9 Structured version   Visualization version   GIF version

Theorem etransclem9 42885
Description: If 𝐾 divides 𝑁 but 𝐾 does not divide 𝑀 then 𝑀 + 𝑁 cannot be zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
etransclem9.k (𝜑𝐾 ∈ ℤ)
etransclem9.kn0 (𝜑𝐾 ≠ 0)
etransclem9.m (𝜑𝑀 ∈ ℤ)
etransclem9.n (𝜑𝑁 ∈ ℤ)
etransclem9.km (𝜑 → ¬ 𝐾𝑀)
etransclem9.kn (𝜑𝐾𝑁)
Assertion
Ref Expression
etransclem9 (𝜑 → (𝑀 + 𝑁) ≠ 0)

Proof of Theorem etransclem9
StepHypRef Expression
1 etransclem9.km . . . 4 (𝜑 → ¬ 𝐾𝑀)
2 etransclem9.k . . . . 5 (𝜑𝐾 ∈ ℤ)
3 etransclem9.kn0 . . . . 5 (𝜑𝐾 ≠ 0)
4 etransclem9.m . . . . 5 (𝜑𝑀 ∈ ℤ)
5 dvdsval2 15602 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝐾𝑀 ↔ (𝑀 / 𝐾) ∈ ℤ))
62, 3, 4, 5syl3anc 1368 . . . 4 (𝜑 → (𝐾𝑀 ↔ (𝑀 / 𝐾) ∈ ℤ))
71, 6mtbid 327 . . 3 (𝜑 → ¬ (𝑀 / 𝐾) ∈ ℤ)
8 df-neg 10862 . . . . . . 7 -𝑁 = (0 − 𝑁)
98a1i 11 . . . . . 6 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → -𝑁 = (0 − 𝑁))
10 oveq1 7142 . . . . . . . 8 ((𝑀 + 𝑁) = 0 → ((𝑀 + 𝑁) − 𝑁) = (0 − 𝑁))
1110eqcomd 2804 . . . . . . 7 ((𝑀 + 𝑁) = 0 → (0 − 𝑁) = ((𝑀 + 𝑁) − 𝑁))
1211adantl 485 . . . . . 6 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (0 − 𝑁) = ((𝑀 + 𝑁) − 𝑁))
134zcnd 12076 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
14 etransclem9.n . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
1514zcnd 12076 . . . . . . . 8 (𝜑𝑁 ∈ ℂ)
1613, 15pncand 10987 . . . . . . 7 (𝜑 → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
1716adantr 484 . . . . . 6 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → ((𝑀 + 𝑁) − 𝑁) = 𝑀)
189, 12, 173eqtrrd 2838 . . . . 5 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → 𝑀 = -𝑁)
1918oveq1d 7150 . . . 4 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (𝑀 / 𝐾) = (-𝑁 / 𝐾))
20 etransclem9.kn . . . . . . 7 (𝜑𝐾𝑁)
21 dvdsnegb 15619 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑁𝐾 ∥ -𝑁))
222, 14, 21syl2anc 587 . . . . . . 7 (𝜑 → (𝐾𝑁𝐾 ∥ -𝑁))
2320, 22mpbid 235 . . . . . 6 (𝜑𝐾 ∥ -𝑁)
2414znegcld 12077 . . . . . . 7 (𝜑 → -𝑁 ∈ ℤ)
25 dvdsval2 15602 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ∧ -𝑁 ∈ ℤ) → (𝐾 ∥ -𝑁 ↔ (-𝑁 / 𝐾) ∈ ℤ))
262, 3, 24, 25syl3anc 1368 . . . . . 6 (𝜑 → (𝐾 ∥ -𝑁 ↔ (-𝑁 / 𝐾) ∈ ℤ))
2723, 26mpbid 235 . . . . 5 (𝜑 → (-𝑁 / 𝐾) ∈ ℤ)
2827adantr 484 . . . 4 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (-𝑁 / 𝐾) ∈ ℤ)
2919, 28eqeltrd 2890 . . 3 ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (𝑀 / 𝐾) ∈ ℤ)
307, 29mtand 815 . 2 (𝜑 → ¬ (𝑀 + 𝑁) = 0)
3130neqned 2994 1 (𝜑 → (𝑀 + 𝑁) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  (class class class)co 7135  0cc0 10526   + caddc 10529  cmin 10859  -cneg 10860   / cdiv 11286  cz 11969  cdvds 15599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-z 11970  df-dvds 15600
This theorem is referenced by:  etransclem44  42920
  Copyright terms: Public domain W3C validator