| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem9 | Structured version Visualization version GIF version | ||
| Description: If 𝐾 divides 𝑁 but 𝐾 does not divide 𝑀 then 𝑀 + 𝑁 cannot be zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| etransclem9.k | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| etransclem9.kn0 | ⊢ (𝜑 → 𝐾 ≠ 0) |
| etransclem9.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| etransclem9.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| etransclem9.km | ⊢ (𝜑 → ¬ 𝐾 ∥ 𝑀) |
| etransclem9.kn | ⊢ (𝜑 → 𝐾 ∥ 𝑁) |
| Ref | Expression |
|---|---|
| etransclem9 | ⊢ (𝜑 → (𝑀 + 𝑁) ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | etransclem9.km | . . . 4 ⊢ (𝜑 → ¬ 𝐾 ∥ 𝑀) | |
| 2 | etransclem9.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 3 | etransclem9.kn0 | . . . . 5 ⊢ (𝜑 → 𝐾 ≠ 0) | |
| 4 | etransclem9.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 5 | dvdsval2 16201 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝐾 ∥ 𝑀 ↔ (𝑀 / 𝐾) ∈ ℤ)) | |
| 6 | 2, 3, 4, 5 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐾 ∥ 𝑀 ↔ (𝑀 / 𝐾) ∈ ℤ)) |
| 7 | 1, 6 | mtbid 324 | . . 3 ⊢ (𝜑 → ¬ (𝑀 / 𝐾) ∈ ℤ) |
| 8 | df-neg 11384 | . . . . . . 7 ⊢ -𝑁 = (0 − 𝑁) | |
| 9 | 8 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → -𝑁 = (0 − 𝑁)) |
| 10 | oveq1 7376 | . . . . . . . 8 ⊢ ((𝑀 + 𝑁) = 0 → ((𝑀 + 𝑁) − 𝑁) = (0 − 𝑁)) | |
| 11 | 10 | eqcomd 2735 | . . . . . . 7 ⊢ ((𝑀 + 𝑁) = 0 → (0 − 𝑁) = ((𝑀 + 𝑁) − 𝑁)) |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (0 − 𝑁) = ((𝑀 + 𝑁) − 𝑁)) |
| 13 | 4 | zcnd 12615 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 14 | etransclem9.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 15 | 14 | zcnd 12615 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 16 | 13, 15 | pncand 11510 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 + 𝑁) − 𝑁) = 𝑀) |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) |
| 18 | 9, 12, 17 | 3eqtrrd 2769 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → 𝑀 = -𝑁) |
| 19 | 18 | oveq1d 7384 | . . . 4 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (𝑀 / 𝐾) = (-𝑁 / 𝐾)) |
| 20 | etransclem9.kn | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∥ 𝑁) | |
| 21 | dvdsnegb 16219 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ 𝑁 ↔ 𝐾 ∥ -𝑁)) | |
| 22 | 2, 14, 21 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝐾 ∥ 𝑁 ↔ 𝐾 ∥ -𝑁)) |
| 23 | 20, 22 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∥ -𝑁) |
| 24 | 14 | znegcld 12616 | . . . . . . 7 ⊢ (𝜑 → -𝑁 ∈ ℤ) |
| 25 | dvdsval2 16201 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ∧ -𝑁 ∈ ℤ) → (𝐾 ∥ -𝑁 ↔ (-𝑁 / 𝐾) ∈ ℤ)) | |
| 26 | 2, 3, 24, 25 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐾 ∥ -𝑁 ↔ (-𝑁 / 𝐾) ∈ ℤ)) |
| 27 | 23, 26 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (-𝑁 / 𝐾) ∈ ℤ) |
| 28 | 27 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (-𝑁 / 𝐾) ∈ ℤ) |
| 29 | 19, 28 | eqeltrd 2828 | . . 3 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (𝑀 / 𝐾) ∈ ℤ) |
| 30 | 7, 29 | mtand 815 | . 2 ⊢ (𝜑 → ¬ (𝑀 + 𝑁) = 0) |
| 31 | 30 | neqned 2932 | 1 ⊢ (𝜑 → (𝑀 + 𝑁) ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 (class class class)co 7369 0cc0 11044 + caddc 11047 − cmin 11381 -cneg 11382 / cdiv 11811 ℤcz 12505 ∥ cdvds 16198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-z 12506 df-dvds 16199 |
| This theorem is referenced by: etransclem44 46269 |
| Copyright terms: Public domain | W3C validator |