![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem9 | Structured version Visualization version GIF version |
Description: If 𝐾 divides 𝑁 but 𝐾 does not divide 𝑀 then 𝑀 + 𝑁 cannot be zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem9.k | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
etransclem9.kn0 | ⊢ (𝜑 → 𝐾 ≠ 0) |
etransclem9.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
etransclem9.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
etransclem9.km | ⊢ (𝜑 → ¬ 𝐾 ∥ 𝑀) |
etransclem9.kn | ⊢ (𝜑 → 𝐾 ∥ 𝑁) |
Ref | Expression |
---|---|
etransclem9 | ⊢ (𝜑 → (𝑀 + 𝑁) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etransclem9.km | . . . 4 ⊢ (𝜑 → ¬ 𝐾 ∥ 𝑀) | |
2 | etransclem9.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
3 | etransclem9.kn0 | . . . . 5 ⊢ (𝜑 → 𝐾 ≠ 0) | |
4 | etransclem9.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | dvdsval2 16305 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ∧ 𝑀 ∈ ℤ) → (𝐾 ∥ 𝑀 ↔ (𝑀 / 𝐾) ∈ ℤ)) | |
6 | 2, 3, 4, 5 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝐾 ∥ 𝑀 ↔ (𝑀 / 𝐾) ∈ ℤ)) |
7 | 1, 6 | mtbid 324 | . . 3 ⊢ (𝜑 → ¬ (𝑀 / 𝐾) ∈ ℤ) |
8 | df-neg 11523 | . . . . . . 7 ⊢ -𝑁 = (0 − 𝑁) | |
9 | 8 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → -𝑁 = (0 − 𝑁)) |
10 | oveq1 7455 | . . . . . . . 8 ⊢ ((𝑀 + 𝑁) = 0 → ((𝑀 + 𝑁) − 𝑁) = (0 − 𝑁)) | |
11 | 10 | eqcomd 2746 | . . . . . . 7 ⊢ ((𝑀 + 𝑁) = 0 → (0 − 𝑁) = ((𝑀 + 𝑁) − 𝑁)) |
12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (0 − 𝑁) = ((𝑀 + 𝑁) − 𝑁)) |
13 | 4 | zcnd 12748 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
14 | etransclem9.n | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
15 | 14 | zcnd 12748 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℂ) |
16 | 13, 15 | pncand 11648 | . . . . . . 7 ⊢ (𝜑 → ((𝑀 + 𝑁) − 𝑁) = 𝑀) |
17 | 16 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) |
18 | 9, 12, 17 | 3eqtrrd 2785 | . . . . 5 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → 𝑀 = -𝑁) |
19 | 18 | oveq1d 7463 | . . . 4 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (𝑀 / 𝐾) = (-𝑁 / 𝐾)) |
20 | etransclem9.kn | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∥ 𝑁) | |
21 | dvdsnegb 16322 | . . . . . . . 8 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∥ 𝑁 ↔ 𝐾 ∥ -𝑁)) | |
22 | 2, 14, 21 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (𝐾 ∥ 𝑁 ↔ 𝐾 ∥ -𝑁)) |
23 | 20, 22 | mpbid 232 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∥ -𝑁) |
24 | 14 | znegcld 12749 | . . . . . . 7 ⊢ (𝜑 → -𝑁 ∈ ℤ) |
25 | dvdsval2 16305 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝐾 ≠ 0 ∧ -𝑁 ∈ ℤ) → (𝐾 ∥ -𝑁 ↔ (-𝑁 / 𝐾) ∈ ℤ)) | |
26 | 2, 3, 24, 25 | syl3anc 1371 | . . . . . 6 ⊢ (𝜑 → (𝐾 ∥ -𝑁 ↔ (-𝑁 / 𝐾) ∈ ℤ)) |
27 | 23, 26 | mpbid 232 | . . . . 5 ⊢ (𝜑 → (-𝑁 / 𝐾) ∈ ℤ) |
28 | 27 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (-𝑁 / 𝐾) ∈ ℤ) |
29 | 19, 28 | eqeltrd 2844 | . . 3 ⊢ ((𝜑 ∧ (𝑀 + 𝑁) = 0) → (𝑀 / 𝐾) ∈ ℤ) |
30 | 7, 29 | mtand 815 | . 2 ⊢ (𝜑 → ¬ (𝑀 + 𝑁) = 0) |
31 | 30 | neqned 2953 | 1 ⊢ (𝜑 → (𝑀 + 𝑁) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 (class class class)co 7448 0cc0 11184 + caddc 11187 − cmin 11520 -cneg 11521 / cdiv 11947 ℤcz 12639 ∥ cdvds 16302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-z 12640 df-dvds 16303 |
This theorem is referenced by: etransclem44 46199 |
Copyright terms: Public domain | W3C validator |