![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem8 | Structured version Visualization version GIF version |
Description: πΉ is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem8.x | β’ (π β π β β) |
etransclem8.p | β’ (π β π β β) |
etransclem8.f | β’ πΉ = (π₯ β π β¦ ((π₯β(π β 1)) Β· βπ β (1...π)((π₯ β π)βπ))) |
Ref | Expression |
---|---|
etransclem8 | β’ (π β πΉ:πβΆβ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etransclem8.x | . . . . 5 β’ (π β π β β) | |
2 | 1 | sselda 3983 | . . . 4 β’ ((π β§ π₯ β π) β π₯ β β) |
3 | etransclem8.p | . . . . . 6 β’ (π β π β β) | |
4 | 3 | adantr 480 | . . . . 5 β’ ((π β§ π₯ β π) β π β β) |
5 | nnm1nn0 12518 | . . . . 5 β’ (π β β β (π β 1) β β0) | |
6 | 4, 5 | syl 17 | . . . 4 β’ ((π β§ π₯ β π) β (π β 1) β β0) |
7 | 2, 6 | expcld 14116 | . . 3 β’ ((π β§ π₯ β π) β (π₯β(π β 1)) β β) |
8 | fzfid 13943 | . . . 4 β’ ((π β§ π₯ β π) β (1...π) β Fin) | |
9 | 2 | adantr 480 | . . . . . 6 β’ (((π β§ π₯ β π) β§ π β (1...π)) β π₯ β β) |
10 | elfzelz 13506 | . . . . . . . 8 β’ (π β (1...π) β π β β€) | |
11 | 10 | zcnd 12672 | . . . . . . 7 β’ (π β (1...π) β π β β) |
12 | 11 | adantl 481 | . . . . . 6 β’ (((π β§ π₯ β π) β§ π β (1...π)) β π β β) |
13 | 9, 12 | subcld 11576 | . . . . 5 β’ (((π β§ π₯ β π) β§ π β (1...π)) β (π₯ β π) β β) |
14 | 3 | nnnn0d 12537 | . . . . . 6 β’ (π β π β β0) |
15 | 14 | ad2antrr 723 | . . . . 5 β’ (((π β§ π₯ β π) β§ π β (1...π)) β π β β0) |
16 | 13, 15 | expcld 14116 | . . . 4 β’ (((π β§ π₯ β π) β§ π β (1...π)) β ((π₯ β π)βπ) β β) |
17 | 8, 16 | fprodcl 15901 | . . 3 β’ ((π β§ π₯ β π) β βπ β (1...π)((π₯ β π)βπ) β β) |
18 | 7, 17 | mulcld 11239 | . 2 β’ ((π β§ π₯ β π) β ((π₯β(π β 1)) Β· βπ β (1...π)((π₯ β π)βπ)) β β) |
19 | etransclem8.f | . 2 β’ πΉ = (π₯ β π β¦ ((π₯β(π β 1)) Β· βπ β (1...π)((π₯ β π)βπ))) | |
20 | 18, 19 | fmptd 7116 | 1 β’ (π β πΉ:πβΆβ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β wss 3949 β¦ cmpt 5232 βΆwf 6540 (class class class)co 7412 βcc 11111 1c1 11114 Β· cmul 11118 β cmin 11449 βcn 12217 β0cn0 12477 ...cfz 13489 βcexp 14032 βcprod 15854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-inf2 9639 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-sup 9440 df-oi 9508 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-fz 13490 df-fzo 13633 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-prod 15855 |
This theorem is referenced by: etransclem18 45268 etransclem23 45273 etransclem46 45296 |
Copyright terms: Public domain | W3C validator |