MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldivndvdslt Structured version   Visualization version   GIF version

Theorem fldivndvdslt 15554
Description: The floor of an integer divided by a nonzero integer not dividing the first integer is less than the integer divided by the positive integer. (Contributed by AV, 4-Jul-2021.)
Assertion
Ref Expression
fldivndvdslt ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿𝐾) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿))

Proof of Theorem fldivndvdslt
StepHypRef Expression
1 zre 11737 . . . . 5 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
21adantr 474 . . . 4 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → 𝐾 ∈ ℝ)
3 zre 11737 . . . . 5 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
43ad2antrl 718 . . . 4 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → 𝐿 ∈ ℝ)
5 simprr 763 . . . 4 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → 𝐿 ≠ 0)
62, 4, 5redivcld 11206 . . 3 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → (𝐾 / 𝐿) ∈ ℝ)
763adant3 1123 . 2 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿𝐾) → (𝐾 / 𝐿) ∈ ℝ)
8 simprl 761 . . . . 5 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → 𝐿 ∈ ℤ)
9 simpl 476 . . . . 5 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → 𝐾 ∈ ℤ)
10 dvdsval2 15399 . . . . 5 ((𝐿 ∈ ℤ ∧ 𝐿 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝐿𝐾 ↔ (𝐾 / 𝐿) ∈ ℤ))
118, 5, 9, 10syl3anc 1439 . . . 4 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → (𝐿𝐾 ↔ (𝐾 / 𝐿) ∈ ℤ))
1211notbid 310 . . 3 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0)) → (¬ 𝐿𝐾 ↔ ¬ (𝐾 / 𝐿) ∈ ℤ))
1312biimp3a 1542 . 2 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿𝐾) → ¬ (𝐾 / 𝐿) ∈ ℤ)
14 flltnz 12936 . 2 (((𝐾 / 𝐿) ∈ ℝ ∧ ¬ (𝐾 / 𝐿) ∈ ℤ) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿))
157, 13, 14syl2anc 579 1 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿𝐾) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071  wcel 2107  wne 2969   class class class wbr 4888  cfv 6137  (class class class)co 6924  cr 10273  0cc0 10274   < clt 10413   / cdiv 11035  cz 11733  cfl 12915  cdvds 15396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-sup 8638  df-inf 8639  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11036  df-nn 11380  df-n0 11648  df-z 11734  df-uz 11998  df-fl 12917  df-dvds 15397
This theorem is referenced by:  flodddiv4lt  15555
  Copyright terms: Public domain W3C validator