![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expne0d | Structured version Visualization version GIF version |
Description: A nonnegative integer power is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
sqrecd.1 | ⊢ (𝜑 → 𝐴 ≠ 0) |
expclzd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
expne0d | ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | sqrecd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
3 | expclzd.3 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
4 | expne0i 14145 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ≠ 0) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2946 (class class class)co 7448 ℂcc 11182 0cc0 11184 ℤcz 12639 ↑cexp 14112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-seq 14053 df-exp 14113 |
This theorem is referenced by: znsqcld 14212 absexpz 15354 0.999... 15929 bitsfzo 16481 bitsmod 16482 bitsinv1lem 16487 bitsuz 16520 pcexp 16906 dvdsprmpweqle 16933 pcaddlem 16935 pcadd 16936 qexpz 16948 dvrecg 26031 dvexp3 26036 plyeq0lem 26269 aareccl 26386 taylthlem2 26434 taylthlem2OLD 26435 root1cj 26817 cxpeq 26818 dcubic1lem 26904 dcubic2 26905 cubic2 26909 cubic 26910 lgamgulmlem4 27093 basellem4 27145 basellem8 27149 lgseisenlem1 27437 lgseisenlem2 27438 lgsquadlem1 27442 nrt2irr 30505 dya2icoseg 34242 dya2iocucvr 34249 omssubadd 34265 oddpwdc 34319 signsplypnf 34527 signsply0 34528 knoppndvlem7 36484 knoppndvlem17 36494 dvrelogpow2b 42025 aks4d1p1p6 42030 aks4d1p1p7 42031 aks4d1p1p5 42032 aks4d1p8d3 42043 aks4d1p8 42044 aks6d1c2p2 42076 exp11d 42313 dffltz 42589 fltdiv 42591 fltnlta 42618 3cubeslem4 42645 rmxyneg 42877 radcnvrat 44283 dvdivbd 45844 iblsplit 45887 wallispi2lem1 45992 wallispi2lem2 45993 wallispi2 45994 stirlinglem3 45997 stirlinglem4 45998 stirlinglem7 46001 stirlinglem8 46002 stirlinglem10 46004 stirlinglem13 46007 stirlinglem14 46008 stirlinglem15 46009 fourierdlem56 46083 fourierdlem57 46084 elaa2lem 46154 sge0ad2en 46352 ovnsubaddlem1 46491 fldivexpfllog2 48299 nn0digval 48334 dignnld 48337 dig2nn1st 48339 dig2bits 48348 dignn0flhalflem1 48349 dignn0flhalflem2 48350 dignn0ehalf 48351 itsclc0xyqsolr 48503 |
Copyright terms: Public domain | W3C validator |