| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expne0d | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer power is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| sqrecd.1 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| expclzd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| expne0d | ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | sqrecd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | expclzd.3 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 4 | expne0i 14135 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ≠ 0) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2940 (class class class)co 7431 ℂcc 11153 0cc0 11155 ℤcz 12613 ↑cexp 14102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-seq 14043 df-exp 14103 |
| This theorem is referenced by: znsqcld 14202 absexpz 15344 0.999... 15917 bitsfzo 16472 bitsmod 16473 bitsinv1lem 16478 bitsuz 16511 pcexp 16897 dvdsprmpweqle 16924 pcaddlem 16926 pcadd 16927 qexpz 16939 dvrecg 26011 dvexp3 26016 plyeq0lem 26249 aareccl 26368 taylthlem2 26416 taylthlem2OLD 26417 root1cj 26799 cxpeq 26800 dcubic1lem 26886 dcubic2 26887 cubic2 26891 cubic 26892 lgamgulmlem4 27075 basellem4 27127 basellem8 27131 lgseisenlem1 27419 lgseisenlem2 27420 lgsquadlem1 27424 nrt2irr 30492 dya2icoseg 34279 dya2iocucvr 34286 omssubadd 34302 oddpwdc 34356 signsplypnf 34565 signsply0 34566 knoppndvlem7 36519 knoppndvlem17 36529 dvrelogpow2b 42069 aks4d1p1p6 42074 aks4d1p1p7 42075 aks4d1p1p5 42076 aks4d1p8d3 42087 aks4d1p8 42088 aks6d1c2p2 42120 exp11d 42361 dffltz 42644 fltdiv 42646 fltnlta 42673 3cubeslem4 42700 rmxyneg 42932 radcnvrat 44333 dvdivbd 45938 iblsplit 45981 wallispi2lem1 46086 wallispi2lem2 46087 wallispi2 46088 stirlinglem3 46091 stirlinglem4 46092 stirlinglem7 46095 stirlinglem8 46096 stirlinglem10 46098 stirlinglem13 46101 stirlinglem14 46102 stirlinglem15 46103 fourierdlem56 46177 fourierdlem57 46178 elaa2lem 46248 sge0ad2en 46446 ovnsubaddlem1 46585 fldivexpfllog2 48486 nn0digval 48521 dignnld 48524 dig2nn1st 48526 dig2bits 48535 dignn0flhalflem1 48536 dignn0flhalflem2 48537 dignn0ehalf 48538 itsclc0xyqsolr 48690 |
| Copyright terms: Public domain | W3C validator |