Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expne0d | Structured version Visualization version GIF version |
Description: Nonnegative integer exponentiation is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
sqrecd.1 | ⊢ (𝜑 → 𝐴 ≠ 0) |
expclzd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
expne0d | ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | sqrecd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
3 | expclzd.3 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
4 | expne0i 13815 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ≠ 0) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ≠ wne 2943 (class class class)co 7275 ℂcc 10869 0cc0 10871 ℤcz 12319 ↑cexp 13782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-seq 13722 df-exp 13783 |
This theorem is referenced by: znsqcld 13880 absexpz 15017 0.999... 15593 bitsfzo 16142 bitsmod 16143 bitsinv1lem 16148 bitsuz 16181 pcexp 16560 dvdsprmpweqle 16587 pcaddlem 16589 pcadd 16590 qexpz 16602 dvrecg 25137 dvexp3 25142 plyeq0lem 25371 aareccl 25486 taylthlem2 25533 root1cj 25909 cxpeq 25910 dcubic1lem 25993 dcubic2 25994 cubic2 25998 cubic 25999 lgamgulmlem4 26181 basellem4 26233 basellem8 26237 lgseisenlem1 26523 lgseisenlem2 26524 lgsquadlem1 26528 dya2icoseg 32244 dya2iocucvr 32251 omssubadd 32267 oddpwdc 32321 signsplypnf 32529 signsply0 32530 knoppndvlem7 34698 knoppndvlem17 34708 dvrelogpow2b 40076 aks4d1p1p6 40081 aks4d1p1p7 40082 aks4d1p1p5 40083 aks4d1p8d3 40094 aks4d1p8 40095 exp11d 40325 dffltz 40471 fltdiv 40473 fltnlta 40500 3cubeslem4 40511 rmxyneg 40742 radcnvrat 41932 dvdivbd 43464 iblsplit 43507 wallispi2lem1 43612 wallispi2lem2 43613 wallispi2 43614 stirlinglem3 43617 stirlinglem4 43618 stirlinglem7 43621 stirlinglem8 43622 stirlinglem10 43624 stirlinglem13 43627 stirlinglem14 43628 stirlinglem15 43629 fourierdlem56 43703 fourierdlem57 43704 elaa2lem 43774 sge0ad2en 43969 ovnsubaddlem1 44108 fldivexpfllog2 45911 nn0digval 45946 dignnld 45949 dig2nn1st 45951 dig2bits 45960 dignn0flhalflem1 45961 dignn0flhalflem2 45962 dignn0ehalf 45963 itsclc0xyqsolr 46115 |
Copyright terms: Public domain | W3C validator |