| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expne0d | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer power is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| sqrecd.1 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| expclzd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| expne0d | ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | sqrecd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | expclzd.3 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 4 | expne0i 14003 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ≠ 0) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ≠ wne 2929 (class class class)co 7352 ℂcc 11011 0cc0 11013 ℤcz 12475 ↑cexp 13970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-seq 13911 df-exp 13971 |
| This theorem is referenced by: znsqcld 14071 absexpz 15214 0.999... 15790 bitsfzo 16348 bitsmod 16349 bitsinv1lem 16354 bitsuz 16387 pcexp 16773 dvdsprmpweqle 16800 pcaddlem 16802 pcadd 16803 qexpz 16815 dvrecg 25905 dvexp3 25910 plyeq0lem 26143 aareccl 26262 taylthlem2 26310 taylthlem2OLD 26311 root1cj 26694 cxpeq 26695 dcubic1lem 26781 dcubic2 26782 cubic2 26786 cubic 26787 lgamgulmlem4 26970 basellem4 27022 basellem8 27026 lgseisenlem1 27314 lgseisenlem2 27315 lgsquadlem1 27319 nrt2irr 30455 constrresqrtcl 33811 cos9thpiminplylem2 33817 dya2icoseg 34311 dya2iocucvr 34318 omssubadd 34334 oddpwdc 34388 signsplypnf 34584 signsply0 34585 knoppndvlem7 36583 knoppndvlem17 36593 dvrelogpow2b 42182 aks4d1p1p6 42187 aks4d1p1p7 42188 aks4d1p1p5 42189 aks4d1p8d3 42200 aks4d1p8 42201 aks6d1c2p2 42233 exp11d 42445 dffltz 42753 fltdiv 42755 fltnlta 42782 3cubeslem4 42807 rmxyneg 43038 radcnvrat 44432 dvdivbd 46046 iblsplit 46089 wallispi2lem1 46194 wallispi2lem2 46195 wallispi2 46196 stirlinglem3 46199 stirlinglem4 46200 stirlinglem7 46203 stirlinglem8 46204 stirlinglem10 46206 stirlinglem13 46209 stirlinglem14 46210 stirlinglem15 46211 fourierdlem56 46285 fourierdlem57 46286 elaa2lem 46356 sge0ad2en 46554 ovnsubaddlem1 46693 fldivexpfllog2 48691 nn0digval 48726 dignnld 48729 dig2nn1st 48731 dig2bits 48740 dignn0flhalflem1 48741 dignn0flhalflem2 48742 dignn0ehalf 48743 itsclc0xyqsolr 48895 |
| Copyright terms: Public domain | W3C validator |