| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expne0d | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer power is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| sqrecd.1 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| expclzd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| expne0d | ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | sqrecd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | expclzd.3 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 4 | expne0i 14001 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ≠ 0) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 (class class class)co 7346 ℂcc 11004 0cc0 11006 ℤcz 12468 ↑cexp 13968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-seq 13909 df-exp 13969 |
| This theorem is referenced by: znsqcld 14069 absexpz 15212 0.999... 15788 bitsfzo 16346 bitsmod 16347 bitsinv1lem 16352 bitsuz 16385 pcexp 16771 dvdsprmpweqle 16798 pcaddlem 16800 pcadd 16801 qexpz 16813 dvrecg 25905 dvexp3 25910 plyeq0lem 26143 aareccl 26262 taylthlem2 26310 taylthlem2OLD 26311 root1cj 26694 cxpeq 26695 dcubic1lem 26781 dcubic2 26782 cubic2 26786 cubic 26787 lgamgulmlem4 26970 basellem4 27022 basellem8 27026 lgseisenlem1 27314 lgseisenlem2 27315 lgsquadlem1 27319 nrt2irr 30451 constrresqrtcl 33788 cos9thpiminplylem2 33794 dya2icoseg 34288 dya2iocucvr 34295 omssubadd 34311 oddpwdc 34365 signsplypnf 34561 signsply0 34562 knoppndvlem7 36558 knoppndvlem17 36568 dvrelogpow2b 42107 aks4d1p1p6 42112 aks4d1p1p7 42113 aks4d1p1p5 42114 aks4d1p8d3 42125 aks4d1p8 42126 aks6d1c2p2 42158 exp11d 42365 dffltz 42673 fltdiv 42675 fltnlta 42702 3cubeslem4 42728 rmxyneg 42959 radcnvrat 44353 dvdivbd 45967 iblsplit 46010 wallispi2lem1 46115 wallispi2lem2 46116 wallispi2 46117 stirlinglem3 46120 stirlinglem4 46121 stirlinglem7 46124 stirlinglem8 46125 stirlinglem10 46127 stirlinglem13 46130 stirlinglem14 46131 stirlinglem15 46132 fourierdlem56 46206 fourierdlem57 46207 elaa2lem 46277 sge0ad2en 46475 ovnsubaddlem1 46614 fldivexpfllog2 48603 nn0digval 48638 dignnld 48641 dig2nn1st 48643 dig2bits 48652 dignn0flhalflem1 48653 dignn0flhalflem2 48654 dignn0ehalf 48655 itsclc0xyqsolr 48807 |
| Copyright terms: Public domain | W3C validator |