MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expne0d Structured version   Visualization version   GIF version

Theorem expne0d 13798
Description: Nonnegative integer exponentiation is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
expcld.1 (𝜑𝐴 ∈ ℂ)
sqrecd.1 (𝜑𝐴 ≠ 0)
expclzd.3 (𝜑𝑁 ∈ ℤ)
Assertion
Ref Expression
expne0d (𝜑 → (𝐴𝑁) ≠ 0)

Proof of Theorem expne0d
StepHypRef Expression
1 expcld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 sqrecd.1 . 2 (𝜑𝐴 ≠ 0)
3 expclzd.3 . 2 (𝜑𝑁 ∈ ℤ)
4 expne0i 13743 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ≠ 0)
51, 2, 3, 4syl3anc 1369 1 (𝜑 → (𝐴𝑁) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wne 2942  (class class class)co 7255  cc 10800  0cc0 10802  cz 12249  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711
This theorem is referenced by:  znsqcld  13808  absexpz  14945  0.999...  15521  bitsfzo  16070  bitsmod  16071  bitsinv1lem  16076  bitsuz  16109  pcexp  16488  dvdsprmpweqle  16515  pcaddlem  16517  pcadd  16518  qexpz  16530  dvrecg  25042  dvexp3  25047  plyeq0lem  25276  aareccl  25391  taylthlem2  25438  root1cj  25814  cxpeq  25815  dcubic1lem  25898  dcubic2  25899  cubic2  25903  cubic  25904  lgamgulmlem4  26086  basellem4  26138  basellem8  26142  lgseisenlem1  26428  lgseisenlem2  26429  lgsquadlem1  26433  dya2icoseg  32144  dya2iocucvr  32151  omssubadd  32167  oddpwdc  32221  signsplypnf  32429  signsply0  32430  knoppndvlem7  34625  knoppndvlem17  34635  dvrelogpow2b  40004  aks4d1p1p6  40009  aks4d1p1p7  40010  aks4d1p1p5  40011  aks4d1p8d3  40022  aks4d1p8  40023  exp11d  40246  dffltz  40387  fltdiv  40389  fltnlta  40416  3cubeslem4  40427  rmxyneg  40658  radcnvrat  41821  dvdivbd  43354  iblsplit  43397  wallispi2lem1  43502  wallispi2lem2  43503  wallispi2  43504  stirlinglem3  43507  stirlinglem4  43508  stirlinglem7  43511  stirlinglem8  43512  stirlinglem10  43514  stirlinglem13  43517  stirlinglem14  43518  stirlinglem15  43519  fourierdlem56  43593  fourierdlem57  43594  elaa2lem  43664  sge0ad2en  43859  ovnsubaddlem1  43998  fldivexpfllog2  45799  nn0digval  45834  dignnld  45837  dig2nn1st  45839  dig2bits  45848  dignn0flhalflem1  45849  dignn0flhalflem2  45850  dignn0ehalf  45851  itsclc0xyqsolr  46003
  Copyright terms: Public domain W3C validator