![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expne0d | Structured version Visualization version GIF version |
Description: Nonnegative integer exponentiation is nonzero if its mantissa is nonzero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
sqrecd.1 | ⊢ (𝜑 → 𝐴 ≠ 0) |
expclzd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
expne0d | ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | sqrecd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
3 | expclzd.3 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
4 | expne0i 13146 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ≠ 0) | |
5 | 1, 2, 3, 4 | syl3anc 1491 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ≠ wne 2971 (class class class)co 6878 ℂcc 10222 0cc0 10224 ℤcz 11666 ↑cexp 13114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-n0 11581 df-z 11667 df-uz 11931 df-seq 13056 df-exp 13115 |
This theorem is referenced by: absexpz 14386 0.999... 14950 bitsfzo 15492 bitsmod 15493 bitsinv1lem 15498 bitsuz 15531 pcexp 15897 dvdsprmpweqle 15923 pcaddlem 15925 pcadd 15926 qexpz 15938 dvrecg 24077 dvexp3 24082 plyeq0lem 24307 aareccl 24422 taylthlem2 24469 root1cj 24841 cxpeq 24842 dcubic1lem 24922 dcubic2 24923 cubic2 24927 cubic 24928 lgamgulmlem4 25110 basellem4 25162 basellem8 25166 lgseisenlem1 25452 lgseisenlem2 25453 lgsquadlem1 25457 znsqcld 30030 dya2icoseg 30855 dya2iocucvr 30862 omssubadd 30878 oddpwdc 30932 signsplypnf 31145 signsply0 31146 knoppndvlem7 33017 knoppndvlem17 33027 rmxyneg 38270 radcnvrat 39295 dvdivbd 40882 iblsplit 40925 wallispi2lem1 41031 wallispi2lem2 41032 wallispi2 41033 stirlinglem3 41036 stirlinglem4 41037 stirlinglem7 41040 stirlinglem8 41041 stirlinglem10 41043 stirlinglem13 41046 stirlinglem14 41047 stirlinglem15 41048 fourierdlem56 41122 fourierdlem57 41123 elaa2lem 41193 sge0ad2en 41391 ovnsubaddlem1 41530 fldivexpfllog2 43158 nn0digval 43193 dignnld 43196 dig2nn1st 43198 dig2bits 43207 dignn0flhalflem1 43208 dignn0flhalflem2 43209 dignn0ehalf 43210 |
Copyright terms: Public domain | W3C validator |