| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expne0d | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer power is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| sqrecd.1 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| expclzd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| expne0d | ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | sqrecd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | expclzd.3 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 4 | expne0i 14112 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ≠ 0) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2932 (class class class)co 7405 ℂcc 11127 0cc0 11129 ℤcz 12588 ↑cexp 14079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-seq 14020 df-exp 14080 |
| This theorem is referenced by: znsqcld 14180 absexpz 15324 0.999... 15897 bitsfzo 16454 bitsmod 16455 bitsinv1lem 16460 bitsuz 16493 pcexp 16879 dvdsprmpweqle 16906 pcaddlem 16908 pcadd 16909 qexpz 16921 dvrecg 25929 dvexp3 25934 plyeq0lem 26167 aareccl 26286 taylthlem2 26334 taylthlem2OLD 26335 root1cj 26718 cxpeq 26719 dcubic1lem 26805 dcubic2 26806 cubic2 26810 cubic 26811 lgamgulmlem4 26994 basellem4 27046 basellem8 27050 lgseisenlem1 27338 lgseisenlem2 27339 lgsquadlem1 27343 nrt2irr 30454 constrresqrtcl 33811 cos9thpiminplylem2 33817 dya2icoseg 34309 dya2iocucvr 34316 omssubadd 34332 oddpwdc 34386 signsplypnf 34582 signsply0 34583 knoppndvlem7 36536 knoppndvlem17 36546 dvrelogpow2b 42081 aks4d1p1p6 42086 aks4d1p1p7 42087 aks4d1p1p5 42088 aks4d1p8d3 42099 aks4d1p8 42100 aks6d1c2p2 42132 exp11d 42375 dffltz 42657 fltdiv 42659 fltnlta 42686 3cubeslem4 42712 rmxyneg 42944 radcnvrat 44338 dvdivbd 45952 iblsplit 45995 wallispi2lem1 46100 wallispi2lem2 46101 wallispi2 46102 stirlinglem3 46105 stirlinglem4 46106 stirlinglem7 46109 stirlinglem8 46110 stirlinglem10 46112 stirlinglem13 46115 stirlinglem14 46116 stirlinglem15 46117 fourierdlem56 46191 fourierdlem57 46192 elaa2lem 46262 sge0ad2en 46460 ovnsubaddlem1 46599 fldivexpfllog2 48545 nn0digval 48580 dignnld 48583 dig2nn1st 48585 dig2bits 48594 dignn0flhalflem1 48595 dignn0flhalflem2 48596 dignn0ehalf 48597 itsclc0xyqsolr 48749 |
| Copyright terms: Public domain | W3C validator |