Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expne0d | Structured version Visualization version GIF version |
Description: Nonnegative integer exponentiation is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
sqrecd.1 | ⊢ (𝜑 → 𝐴 ≠ 0) |
expclzd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
Ref | Expression |
---|---|
expne0d | ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | sqrecd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
3 | expclzd.3 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
4 | expne0i 13743 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ≠ 0) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2942 (class class class)co 7255 ℂcc 10800 0cc0 10802 ℤcz 12249 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-exp 13711 |
This theorem is referenced by: znsqcld 13808 absexpz 14945 0.999... 15521 bitsfzo 16070 bitsmod 16071 bitsinv1lem 16076 bitsuz 16109 pcexp 16488 dvdsprmpweqle 16515 pcaddlem 16517 pcadd 16518 qexpz 16530 dvrecg 25042 dvexp3 25047 plyeq0lem 25276 aareccl 25391 taylthlem2 25438 root1cj 25814 cxpeq 25815 dcubic1lem 25898 dcubic2 25899 cubic2 25903 cubic 25904 lgamgulmlem4 26086 basellem4 26138 basellem8 26142 lgseisenlem1 26428 lgseisenlem2 26429 lgsquadlem1 26433 dya2icoseg 32144 dya2iocucvr 32151 omssubadd 32167 oddpwdc 32221 signsplypnf 32429 signsply0 32430 knoppndvlem7 34625 knoppndvlem17 34635 dvrelogpow2b 40004 aks4d1p1p6 40009 aks4d1p1p7 40010 aks4d1p1p5 40011 aks4d1p8d3 40022 aks4d1p8 40023 exp11d 40246 dffltz 40387 fltdiv 40389 fltnlta 40416 3cubeslem4 40427 rmxyneg 40658 radcnvrat 41821 dvdivbd 43354 iblsplit 43397 wallispi2lem1 43502 wallispi2lem2 43503 wallispi2 43504 stirlinglem3 43507 stirlinglem4 43508 stirlinglem7 43511 stirlinglem8 43512 stirlinglem10 43514 stirlinglem13 43517 stirlinglem14 43518 stirlinglem15 43519 fourierdlem56 43593 fourierdlem57 43594 elaa2lem 43664 sge0ad2en 43859 ovnsubaddlem1 43998 fldivexpfllog2 45799 nn0digval 45834 dignnld 45837 dig2nn1st 45839 dig2bits 45848 dignn0flhalflem1 45849 dignn0flhalflem2 45850 dignn0ehalf 45851 itsclc0xyqsolr 46003 |
Copyright terms: Public domain | W3C validator |