| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expne0d | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer power is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| expcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| sqrecd.1 | ⊢ (𝜑 → 𝐴 ≠ 0) |
| expclzd.3 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| Ref | Expression |
|---|---|
| expne0d | ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | sqrecd.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 0) | |
| 3 | expclzd.3 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 4 | expne0i 14019 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ≠ 0) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7353 ℂcc 11026 0cc0 11028 ℤcz 12489 ↑cexp 13986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-seq 13927 df-exp 13987 |
| This theorem is referenced by: znsqcld 14087 absexpz 15230 0.999... 15806 bitsfzo 16364 bitsmod 16365 bitsinv1lem 16370 bitsuz 16403 pcexp 16789 dvdsprmpweqle 16816 pcaddlem 16818 pcadd 16819 qexpz 16831 dvrecg 25893 dvexp3 25898 plyeq0lem 26131 aareccl 26250 taylthlem2 26298 taylthlem2OLD 26299 root1cj 26682 cxpeq 26683 dcubic1lem 26769 dcubic2 26770 cubic2 26774 cubic 26775 lgamgulmlem4 26958 basellem4 27010 basellem8 27014 lgseisenlem1 27302 lgseisenlem2 27303 lgsquadlem1 27307 nrt2irr 30435 constrresqrtcl 33746 cos9thpiminplylem2 33752 dya2icoseg 34247 dya2iocucvr 34254 omssubadd 34270 oddpwdc 34324 signsplypnf 34520 signsply0 34521 knoppndvlem7 36494 knoppndvlem17 36504 dvrelogpow2b 42044 aks4d1p1p6 42049 aks4d1p1p7 42050 aks4d1p1p5 42051 aks4d1p8d3 42062 aks4d1p8 42063 aks6d1c2p2 42095 exp11d 42302 dffltz 42610 fltdiv 42612 fltnlta 42639 3cubeslem4 42665 rmxyneg 42896 radcnvrat 44290 dvdivbd 45908 iblsplit 45951 wallispi2lem1 46056 wallispi2lem2 46057 wallispi2 46058 stirlinglem3 46061 stirlinglem4 46062 stirlinglem7 46065 stirlinglem8 46066 stirlinglem10 46068 stirlinglem13 46071 stirlinglem14 46072 stirlinglem15 46073 fourierdlem56 46147 fourierdlem57 46148 elaa2lem 46218 sge0ad2en 46416 ovnsubaddlem1 46555 fldivexpfllog2 48554 nn0digval 48589 dignnld 48592 dig2nn1st 48594 dig2bits 48603 dignn0flhalflem1 48604 dignn0flhalflem2 48605 dignn0ehalf 48606 itsclc0xyqsolr 48758 |
| Copyright terms: Public domain | W3C validator |