| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gausslemma2dlem0c | Structured version Visualization version GIF version | ||
| Description: Auxiliary lemma 3 for gausslemma2d 27285. (Contributed by AV, 13-Jul-2021.) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0a.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| gausslemma2dlem0b.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0c | ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2dlem0a.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 2 | eldifi 4094 | . . . . 5 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 4 | gausslemma2dlem0b.h | . . . . . 6 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
| 5 | 1, 4 | gausslemma2dlem0b 27268 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
| 6 | 5 | nnnn0d 12503 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ℕ0) |
| 7 | 3, 6 | jca 511 | . . 3 ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0)) |
| 8 | prmnn 16644 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 9 | nnre 12193 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℝ) | |
| 10 | peano2rem 11489 | . . . . . . . 8 ⊢ (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ) | |
| 11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℝ) |
| 12 | 2re 12260 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 13 | 12 | a1i 11 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 2 ∈ ℝ) |
| 14 | 13, 9 | remulcld 11204 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (2 · 𝑃) ∈ ℝ) |
| 15 | 9 | ltm1d 12115 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) < 𝑃) |
| 16 | nnnn0 12449 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
| 17 | 16 | nn0ge0d 12506 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 0 ≤ 𝑃) |
| 18 | 1le2 12390 | . . . . . . . . 9 ⊢ 1 ≤ 2 | |
| 19 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 1 ≤ 2) |
| 20 | 9, 13, 17, 19 | lemulge12d 12121 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → 𝑃 ≤ (2 · 𝑃)) |
| 21 | 11, 9, 14, 15, 20 | ltletrd 11334 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) < (2 · 𝑃)) |
| 22 | 2pos 12289 | . . . . . . . . 9 ⊢ 0 < 2 | |
| 23 | 12, 22 | pm3.2i 470 | . . . . . . . 8 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 24 | 23 | a1i 11 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2)) |
| 25 | ltdivmul 12058 | . . . . . . 7 ⊢ (((𝑃 − 1) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃))) | |
| 26 | 11, 9, 24, 25 | syl3anc 1373 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃))) |
| 27 | 21, 26 | mpbird 257 | . . . . 5 ⊢ (𝑃 ∈ ℕ → ((𝑃 − 1) / 2) < 𝑃) |
| 28 | 1, 2, 8, 27 | 4syl 19 | . . . 4 ⊢ (𝜑 → ((𝑃 − 1) / 2) < 𝑃) |
| 29 | 4, 28 | eqbrtrid 5142 | . . 3 ⊢ (𝜑 → 𝐻 < 𝑃) |
| 30 | prmndvdsfaclt 16695 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0) → (𝐻 < 𝑃 → ¬ 𝑃 ∥ (!‘𝐻))) | |
| 31 | 7, 29, 30 | sylc 65 | . 2 ⊢ (𝜑 → ¬ 𝑃 ∥ (!‘𝐻)) |
| 32 | 6 | faccld 14249 | . . . . . 6 ⊢ (𝜑 → (!‘𝐻) ∈ ℕ) |
| 33 | 32 | nnzd 12556 | . . . . 5 ⊢ (𝜑 → (!‘𝐻) ∈ ℤ) |
| 34 | nnz 12550 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℤ) | |
| 35 | 1, 2, 8, 34 | 4syl 19 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 36 | 33, 35 | gcdcomd 16484 | . . . 4 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = (𝑃 gcd (!‘𝐻))) |
| 37 | 36 | eqeq1d 2731 | . . 3 ⊢ (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ (𝑃 gcd (!‘𝐻)) = 1)) |
| 38 | coprm 16681 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (!‘𝐻) ∈ ℤ) → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1)) | |
| 39 | 3, 33, 38 | syl2anc 584 | . . 3 ⊢ (𝜑 → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1)) |
| 40 | 37, 39 | bitr4d 282 | . 2 ⊢ (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ ¬ 𝑃 ∥ (!‘𝐻))) |
| 41 | 31, 40 | mpbird 257 | 1 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 {csn 4589 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 · cmul 11073 < clt 11208 ≤ cle 11209 − cmin 11405 / cdiv 11835 ℕcn 12186 2c2 12241 ℕ0cn0 12442 ℤcz 12529 !cfa 14238 ∥ cdvds 16222 gcd cgcd 16464 ℙcprime 16641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-fac 14239 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-gcd 16465 df-prm 16642 |
| This theorem is referenced by: gausslemma2dlem7 27284 |
| Copyright terms: Public domain | W3C validator |