MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem0c Structured version   Visualization version   GIF version

Theorem gausslemma2dlem0c 25496
Description: Auxiliary lemma 3 for gausslemma2d 25512. (Contributed by AV, 13-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0a.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2dlem0b.h 𝐻 = ((𝑃 − 1) / 2)
Assertion
Ref Expression
gausslemma2dlem0c (𝜑 → ((!‘𝐻) gcd 𝑃) = 1)

Proof of Theorem gausslemma2dlem0c
StepHypRef Expression
1 gausslemma2dlem0a.p . . . . 5 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 eldifi 3959 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
31, 2syl 17 . . . 4 (𝜑𝑃 ∈ ℙ)
4 gausslemma2dlem0b.h . . . . . 6 𝐻 = ((𝑃 − 1) / 2)
51, 4gausslemma2dlem0b 25495 . . . . 5 (𝜑𝐻 ∈ ℕ)
65nnnn0d 11678 . . . 4 (𝜑𝐻 ∈ ℕ0)
73, 6jca 509 . . 3 (𝜑 → (𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0))
8 prmnn 15760 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
9 nnre 11358 . . . . . . . . 9 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
10 peano2rem 10669 . . . . . . . . 9 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
119, 10syl 17 . . . . . . . 8 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℝ)
12 2re 11425 . . . . . . . . . 10 2 ∈ ℝ
1312a1i 11 . . . . . . . . 9 (𝑃 ∈ ℕ → 2 ∈ ℝ)
1413, 9remulcld 10387 . . . . . . . 8 (𝑃 ∈ ℕ → (2 · 𝑃) ∈ ℝ)
159ltm1d 11286 . . . . . . . 8 (𝑃 ∈ ℕ → (𝑃 − 1) < 𝑃)
16 nnnn0 11626 . . . . . . . . . 10 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
1716nn0ge0d 11681 . . . . . . . . 9 (𝑃 ∈ ℕ → 0 ≤ 𝑃)
18 1le2 11567 . . . . . . . . . 10 1 ≤ 2
1918a1i 11 . . . . . . . . 9 (𝑃 ∈ ℕ → 1 ≤ 2)
209, 13, 17, 19lemulge12d 11292 . . . . . . . 8 (𝑃 ∈ ℕ → 𝑃 ≤ (2 · 𝑃))
2111, 9, 14, 15, 20ltletrd 10516 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) < (2 · 𝑃))
22 2pos 11461 . . . . . . . . . 10 0 < 2
2312, 22pm3.2i 464 . . . . . . . . 9 (2 ∈ ℝ ∧ 0 < 2)
2423a1i 11 . . . . . . . 8 (𝑃 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2))
25 ltdivmul 11228 . . . . . . . 8 (((𝑃 − 1) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃)))
2611, 9, 24, 25syl3anc 1496 . . . . . . 7 (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃)))
2721, 26mpbird 249 . . . . . 6 (𝑃 ∈ ℕ → ((𝑃 − 1) / 2) < 𝑃)
282, 8, 273syl 18 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) < 𝑃)
291, 28syl 17 . . . 4 (𝜑 → ((𝑃 − 1) / 2) < 𝑃)
304, 29syl5eqbr 4908 . . 3 (𝜑𝐻 < 𝑃)
31 prmndvdsfaclt 15806 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0) → (𝐻 < 𝑃 → ¬ 𝑃 ∥ (!‘𝐻)))
327, 30, 31sylc 65 . 2 (𝜑 → ¬ 𝑃 ∥ (!‘𝐻))
336faccld 13364 . . . . . 6 (𝜑 → (!‘𝐻) ∈ ℕ)
3433nnzd 11809 . . . . 5 (𝜑 → (!‘𝐻) ∈ ℤ)
35 nnz 11727 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
362, 8, 353syl 18 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
371, 36syl 17 . . . . 5 (𝜑𝑃 ∈ ℤ)
38 gcdcom 15608 . . . . 5 (((!‘𝐻) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((!‘𝐻) gcd 𝑃) = (𝑃 gcd (!‘𝐻)))
3934, 37, 38syl2anc 581 . . . 4 (𝜑 → ((!‘𝐻) gcd 𝑃) = (𝑃 gcd (!‘𝐻)))
4039eqeq1d 2827 . . 3 (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ (𝑃 gcd (!‘𝐻)) = 1))
41 coprm 15794 . . . 4 ((𝑃 ∈ ℙ ∧ (!‘𝐻) ∈ ℤ) → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1))
423, 34, 41syl2anc 581 . . 3 (𝜑 → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1))
4340, 42bitr4d 274 . 2 (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ ¬ 𝑃 ∥ (!‘𝐻)))
4432, 43mpbird 249 1 (𝜑 → ((!‘𝐻) gcd 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  cdif 3795  {csn 4397   class class class wbr 4873  cfv 6123  (class class class)co 6905  cr 10251  0cc0 10252  1c1 10253   · cmul 10257   < clt 10391  cle 10392  cmin 10585   / cdiv 11009  cn 11350  2c2 11406  0cn0 11618  cz 11704  !cfa 13353  cdvds 15357   gcd cgcd 15589  cprime 15757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-inf 8618  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-fl 12888  df-mod 12964  df-seq 13096  df-exp 13155  df-fac 13354  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-dvds 15358  df-gcd 15590  df-prm 15758
This theorem is referenced by:  gausslemma2dlem7  25511
  Copyright terms: Public domain W3C validator