Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gausslemma2dlem0c | Structured version Visualization version GIF version |
Description: Auxiliary lemma 3 for gausslemma2d 26522. (Contributed by AV, 13-Jul-2021.) |
Ref | Expression |
---|---|
gausslemma2dlem0a.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
gausslemma2dlem0b.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
Ref | Expression |
---|---|
gausslemma2dlem0c | ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2dlem0a.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
2 | eldifi 4061 | . . . . 5 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) |
4 | gausslemma2dlem0b.h | . . . . . 6 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
5 | 1, 4 | gausslemma2dlem0b 26505 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
6 | 5 | nnnn0d 12293 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ℕ0) |
7 | 3, 6 | jca 512 | . . 3 ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0)) |
8 | prmnn 16379 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
9 | nnre 11980 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℝ) | |
10 | peano2rem 11288 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ) | |
11 | 9, 10 | syl 17 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℝ) |
12 | 2re 12047 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
13 | 12 | a1i 11 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → 2 ∈ ℝ) |
14 | 13, 9 | remulcld 11005 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → (2 · 𝑃) ∈ ℝ) |
15 | 9 | ltm1d 11907 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) < 𝑃) |
16 | nnnn0 12240 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
17 | 16 | nn0ge0d 12296 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → 0 ≤ 𝑃) |
18 | 1le2 12182 | . . . . . . . . . 10 ⊢ 1 ≤ 2 | |
19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → 1 ≤ 2) |
20 | 9, 13, 17, 19 | lemulge12d 11913 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 𝑃 ≤ (2 · 𝑃)) |
21 | 11, 9, 14, 15, 20 | ltletrd 11135 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) < (2 · 𝑃)) |
22 | 2pos 12076 | . . . . . . . . . 10 ⊢ 0 < 2 | |
23 | 12, 22 | pm3.2i 471 | . . . . . . . . 9 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
24 | 23 | a1i 11 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2)) |
25 | ltdivmul 11850 | . . . . . . . 8 ⊢ (((𝑃 − 1) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃))) | |
26 | 11, 9, 24, 25 | syl3anc 1370 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃))) |
27 | 21, 26 | mpbird 256 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → ((𝑃 − 1) / 2) < 𝑃) |
28 | 2, 8, 27 | 3syl 18 | . . . . 5 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) < 𝑃) |
29 | 1, 28 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑃 − 1) / 2) < 𝑃) |
30 | 4, 29 | eqbrtrid 5109 | . . 3 ⊢ (𝜑 → 𝐻 < 𝑃) |
31 | prmndvdsfaclt 16430 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0) → (𝐻 < 𝑃 → ¬ 𝑃 ∥ (!‘𝐻))) | |
32 | 7, 30, 31 | sylc 65 | . 2 ⊢ (𝜑 → ¬ 𝑃 ∥ (!‘𝐻)) |
33 | 6 | faccld 13998 | . . . . . 6 ⊢ (𝜑 → (!‘𝐻) ∈ ℕ) |
34 | 33 | nnzd 12425 | . . . . 5 ⊢ (𝜑 → (!‘𝐻) ∈ ℤ) |
35 | nnz 12342 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℤ) | |
36 | 2, 8, 35 | 3syl 18 | . . . . . 6 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ) |
37 | 1, 36 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
38 | 34, 37 | gcdcomd 16221 | . . . 4 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = (𝑃 gcd (!‘𝐻))) |
39 | 38 | eqeq1d 2740 | . . 3 ⊢ (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ (𝑃 gcd (!‘𝐻)) = 1)) |
40 | coprm 16416 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (!‘𝐻) ∈ ℤ) → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1)) | |
41 | 3, 34, 40 | syl2anc 584 | . . 3 ⊢ (𝜑 → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1)) |
42 | 39, 41 | bitr4d 281 | . 2 ⊢ (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ ¬ 𝑃 ∥ (!‘𝐻))) |
43 | 32, 42 | mpbird 256 | 1 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 {csn 4561 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 · cmul 10876 < clt 11009 ≤ cle 11010 − cmin 11205 / cdiv 11632 ℕcn 11973 2c2 12028 ℕ0cn0 12233 ℤcz 12319 !cfa 13987 ∥ cdvds 15963 gcd cgcd 16201 ℙcprime 16376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-fac 13988 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-gcd 16202 df-prm 16377 |
This theorem is referenced by: gausslemma2dlem7 26521 |
Copyright terms: Public domain | W3C validator |