MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem0c Structured version   Visualization version   GIF version

Theorem gausslemma2dlem0c 26504
Description: Auxiliary lemma 3 for gausslemma2d 26520. (Contributed by AV, 13-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0a.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2dlem0b.h 𝐻 = ((𝑃 − 1) / 2)
Assertion
Ref Expression
gausslemma2dlem0c (𝜑 → ((!‘𝐻) gcd 𝑃) = 1)

Proof of Theorem gausslemma2dlem0c
StepHypRef Expression
1 gausslemma2dlem0a.p . . . . 5 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 eldifi 4066 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
31, 2syl 17 . . . 4 (𝜑𝑃 ∈ ℙ)
4 gausslemma2dlem0b.h . . . . . 6 𝐻 = ((𝑃 − 1) / 2)
51, 4gausslemma2dlem0b 26503 . . . . 5 (𝜑𝐻 ∈ ℕ)
65nnnn0d 12293 . . . 4 (𝜑𝐻 ∈ ℕ0)
73, 6jca 512 . . 3 (𝜑 → (𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0))
8 prmnn 16377 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
9 nnre 11980 . . . . . . . . 9 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
10 peano2rem 11288 . . . . . . . . 9 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
119, 10syl 17 . . . . . . . 8 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℝ)
12 2re 12047 . . . . . . . . . 10 2 ∈ ℝ
1312a1i 11 . . . . . . . . 9 (𝑃 ∈ ℕ → 2 ∈ ℝ)
1413, 9remulcld 11006 . . . . . . . 8 (𝑃 ∈ ℕ → (2 · 𝑃) ∈ ℝ)
159ltm1d 11907 . . . . . . . 8 (𝑃 ∈ ℕ → (𝑃 − 1) < 𝑃)
16 nnnn0 12240 . . . . . . . . . 10 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
1716nn0ge0d 12296 . . . . . . . . 9 (𝑃 ∈ ℕ → 0 ≤ 𝑃)
18 1le2 12182 . . . . . . . . . 10 1 ≤ 2
1918a1i 11 . . . . . . . . 9 (𝑃 ∈ ℕ → 1 ≤ 2)
209, 13, 17, 19lemulge12d 11913 . . . . . . . 8 (𝑃 ∈ ℕ → 𝑃 ≤ (2 · 𝑃))
2111, 9, 14, 15, 20ltletrd 11135 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) < (2 · 𝑃))
22 2pos 12076 . . . . . . . . . 10 0 < 2
2312, 22pm3.2i 471 . . . . . . . . 9 (2 ∈ ℝ ∧ 0 < 2)
2423a1i 11 . . . . . . . 8 (𝑃 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2))
25 ltdivmul 11850 . . . . . . . 8 (((𝑃 − 1) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃)))
2611, 9, 24, 25syl3anc 1370 . . . . . . 7 (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃)))
2721, 26mpbird 256 . . . . . 6 (𝑃 ∈ ℕ → ((𝑃 − 1) / 2) < 𝑃)
282, 8, 273syl 18 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) < 𝑃)
291, 28syl 17 . . . 4 (𝜑 → ((𝑃 − 1) / 2) < 𝑃)
304, 29eqbrtrid 5114 . . 3 (𝜑𝐻 < 𝑃)
31 prmndvdsfaclt 16428 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0) → (𝐻 < 𝑃 → ¬ 𝑃 ∥ (!‘𝐻)))
327, 30, 31sylc 65 . 2 (𝜑 → ¬ 𝑃 ∥ (!‘𝐻))
336faccld 13996 . . . . . 6 (𝜑 → (!‘𝐻) ∈ ℕ)
3433nnzd 12424 . . . . 5 (𝜑 → (!‘𝐻) ∈ ℤ)
35 nnz 12342 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
362, 8, 353syl 18 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
371, 36syl 17 . . . . 5 (𝜑𝑃 ∈ ℤ)
3834, 37gcdcomd 16219 . . . 4 (𝜑 → ((!‘𝐻) gcd 𝑃) = (𝑃 gcd (!‘𝐻)))
3938eqeq1d 2742 . . 3 (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ (𝑃 gcd (!‘𝐻)) = 1))
40 coprm 16414 . . . 4 ((𝑃 ∈ ℙ ∧ (!‘𝐻) ∈ ℤ) → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1))
413, 34, 40syl2anc 584 . . 3 (𝜑 → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1))
4239, 41bitr4d 281 . 2 (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ ¬ 𝑃 ∥ (!‘𝐻)))
4332, 42mpbird 256 1 (𝜑 → ((!‘𝐻) gcd 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  cdif 3889  {csn 4567   class class class wbr 5079  cfv 6432  (class class class)co 7271  cr 10871  0cc0 10872  1c1 10873   · cmul 10877   < clt 11010  cle 11011  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  !cfa 13985  cdvds 15961   gcd cgcd 16199  cprime 16374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-fac 13986  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-dvds 15962  df-gcd 16200  df-prm 16375
This theorem is referenced by:  gausslemma2dlem7  26519
  Copyright terms: Public domain W3C validator