MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem0c Structured version   Visualization version   GIF version

Theorem gausslemma2dlem0c 26506
Description: Auxiliary lemma 3 for gausslemma2d 26522. (Contributed by AV, 13-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0a.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2dlem0b.h 𝐻 = ((𝑃 − 1) / 2)
Assertion
Ref Expression
gausslemma2dlem0c (𝜑 → ((!‘𝐻) gcd 𝑃) = 1)

Proof of Theorem gausslemma2dlem0c
StepHypRef Expression
1 gausslemma2dlem0a.p . . . . 5 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 eldifi 4061 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
31, 2syl 17 . . . 4 (𝜑𝑃 ∈ ℙ)
4 gausslemma2dlem0b.h . . . . . 6 𝐻 = ((𝑃 − 1) / 2)
51, 4gausslemma2dlem0b 26505 . . . . 5 (𝜑𝐻 ∈ ℕ)
65nnnn0d 12293 . . . 4 (𝜑𝐻 ∈ ℕ0)
73, 6jca 512 . . 3 (𝜑 → (𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0))
8 prmnn 16379 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
9 nnre 11980 . . . . . . . . 9 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
10 peano2rem 11288 . . . . . . . . 9 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
119, 10syl 17 . . . . . . . 8 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℝ)
12 2re 12047 . . . . . . . . . 10 2 ∈ ℝ
1312a1i 11 . . . . . . . . 9 (𝑃 ∈ ℕ → 2 ∈ ℝ)
1413, 9remulcld 11005 . . . . . . . 8 (𝑃 ∈ ℕ → (2 · 𝑃) ∈ ℝ)
159ltm1d 11907 . . . . . . . 8 (𝑃 ∈ ℕ → (𝑃 − 1) < 𝑃)
16 nnnn0 12240 . . . . . . . . . 10 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
1716nn0ge0d 12296 . . . . . . . . 9 (𝑃 ∈ ℕ → 0 ≤ 𝑃)
18 1le2 12182 . . . . . . . . . 10 1 ≤ 2
1918a1i 11 . . . . . . . . 9 (𝑃 ∈ ℕ → 1 ≤ 2)
209, 13, 17, 19lemulge12d 11913 . . . . . . . 8 (𝑃 ∈ ℕ → 𝑃 ≤ (2 · 𝑃))
2111, 9, 14, 15, 20ltletrd 11135 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) < (2 · 𝑃))
22 2pos 12076 . . . . . . . . . 10 0 < 2
2312, 22pm3.2i 471 . . . . . . . . 9 (2 ∈ ℝ ∧ 0 < 2)
2423a1i 11 . . . . . . . 8 (𝑃 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2))
25 ltdivmul 11850 . . . . . . . 8 (((𝑃 − 1) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃)))
2611, 9, 24, 25syl3anc 1370 . . . . . . 7 (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃)))
2721, 26mpbird 256 . . . . . 6 (𝑃 ∈ ℕ → ((𝑃 − 1) / 2) < 𝑃)
282, 8, 273syl 18 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) < 𝑃)
291, 28syl 17 . . . 4 (𝜑 → ((𝑃 − 1) / 2) < 𝑃)
304, 29eqbrtrid 5109 . . 3 (𝜑𝐻 < 𝑃)
31 prmndvdsfaclt 16430 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0) → (𝐻 < 𝑃 → ¬ 𝑃 ∥ (!‘𝐻)))
327, 30, 31sylc 65 . 2 (𝜑 → ¬ 𝑃 ∥ (!‘𝐻))
336faccld 13998 . . . . . 6 (𝜑 → (!‘𝐻) ∈ ℕ)
3433nnzd 12425 . . . . 5 (𝜑 → (!‘𝐻) ∈ ℤ)
35 nnz 12342 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
362, 8, 353syl 18 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ)
371, 36syl 17 . . . . 5 (𝜑𝑃 ∈ ℤ)
3834, 37gcdcomd 16221 . . . 4 (𝜑 → ((!‘𝐻) gcd 𝑃) = (𝑃 gcd (!‘𝐻)))
3938eqeq1d 2740 . . 3 (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ (𝑃 gcd (!‘𝐻)) = 1))
40 coprm 16416 . . . 4 ((𝑃 ∈ ℙ ∧ (!‘𝐻) ∈ ℤ) → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1))
413, 34, 40syl2anc 584 . . 3 (𝜑 → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1))
4239, 41bitr4d 281 . 2 (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ ¬ 𝑃 ∥ (!‘𝐻)))
4332, 42mpbird 256 1 (𝜑 → ((!‘𝐻) gcd 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cdif 3884  {csn 4561   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  !cfa 13987  cdvds 15963   gcd cgcd 16201  cprime 16376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-gcd 16202  df-prm 16377
This theorem is referenced by:  gausslemma2dlem7  26521
  Copyright terms: Public domain W3C validator