| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gausslemma2dlem0c | Structured version Visualization version GIF version | ||
| Description: Auxiliary lemma 3 for gausslemma2d 27315. (Contributed by AV, 13-Jul-2021.) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0a.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| gausslemma2dlem0b.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0c | ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2dlem0a.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 2 | eldifi 4080 | . . . . 5 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 4 | gausslemma2dlem0b.h | . . . . . 6 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
| 5 | 1, 4 | gausslemma2dlem0b 27298 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
| 6 | 5 | nnnn0d 12451 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ℕ0) |
| 7 | 3, 6 | jca 511 | . . 3 ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0)) |
| 8 | prmnn 16589 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 9 | nnre 12141 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℝ) | |
| 10 | peano2rem 11437 | . . . . . . . 8 ⊢ (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ) | |
| 11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℝ) |
| 12 | 2re 12208 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 13 | 12 | a1i 11 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 2 ∈ ℝ) |
| 14 | 13, 9 | remulcld 11151 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (2 · 𝑃) ∈ ℝ) |
| 15 | 9 | ltm1d 12063 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) < 𝑃) |
| 16 | nnnn0 12397 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
| 17 | 16 | nn0ge0d 12454 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 0 ≤ 𝑃) |
| 18 | 1le2 12338 | . . . . . . . . 9 ⊢ 1 ≤ 2 | |
| 19 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 1 ≤ 2) |
| 20 | 9, 13, 17, 19 | lemulge12d 12069 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → 𝑃 ≤ (2 · 𝑃)) |
| 21 | 11, 9, 14, 15, 20 | ltletrd 11282 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) < (2 · 𝑃)) |
| 22 | 2pos 12237 | . . . . . . . . 9 ⊢ 0 < 2 | |
| 23 | 12, 22 | pm3.2i 470 | . . . . . . . 8 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 24 | 23 | a1i 11 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2)) |
| 25 | ltdivmul 12006 | . . . . . . 7 ⊢ (((𝑃 − 1) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃))) | |
| 26 | 11, 9, 24, 25 | syl3anc 1373 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃))) |
| 27 | 21, 26 | mpbird 257 | . . . . 5 ⊢ (𝑃 ∈ ℕ → ((𝑃 − 1) / 2) < 𝑃) |
| 28 | 1, 2, 8, 27 | 4syl 19 | . . . 4 ⊢ (𝜑 → ((𝑃 − 1) / 2) < 𝑃) |
| 29 | 4, 28 | eqbrtrid 5130 | . . 3 ⊢ (𝜑 → 𝐻 < 𝑃) |
| 30 | prmndvdsfaclt 16640 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0) → (𝐻 < 𝑃 → ¬ 𝑃 ∥ (!‘𝐻))) | |
| 31 | 7, 29, 30 | sylc 65 | . 2 ⊢ (𝜑 → ¬ 𝑃 ∥ (!‘𝐻)) |
| 32 | 6 | faccld 14195 | . . . . . 6 ⊢ (𝜑 → (!‘𝐻) ∈ ℕ) |
| 33 | 32 | nnzd 12503 | . . . . 5 ⊢ (𝜑 → (!‘𝐻) ∈ ℤ) |
| 34 | nnz 12498 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℤ) | |
| 35 | 1, 2, 8, 34 | 4syl 19 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 36 | 33, 35 | gcdcomd 16429 | . . . 4 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = (𝑃 gcd (!‘𝐻))) |
| 37 | 36 | eqeq1d 2735 | . . 3 ⊢ (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ (𝑃 gcd (!‘𝐻)) = 1)) |
| 38 | coprm 16626 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (!‘𝐻) ∈ ℤ) → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1)) | |
| 39 | 3, 33, 38 | syl2anc 584 | . . 3 ⊢ (𝜑 → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1)) |
| 40 | 37, 39 | bitr4d 282 | . 2 ⊢ (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ ¬ 𝑃 ∥ (!‘𝐻))) |
| 41 | 31, 40 | mpbird 257 | 1 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 {csn 4577 class class class wbr 5095 ‘cfv 6488 (class class class)co 7354 ℝcr 11014 0cc0 11015 1c1 11016 · cmul 11020 < clt 11155 ≤ cle 11156 − cmin 11353 / cdiv 11783 ℕcn 12134 2c2 12189 ℕ0cn0 12390 ℤcz 12477 !cfa 14184 ∥ cdvds 16167 gcd cgcd 16409 ℙcprime 16586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-fl 13700 df-mod 13778 df-seq 13913 df-exp 13973 df-fac 14185 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-dvds 16168 df-gcd 16410 df-prm 16587 |
| This theorem is referenced by: gausslemma2dlem7 27314 |
| Copyright terms: Public domain | W3C validator |