Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gausslemma2dlem0c | Structured version Visualization version GIF version |
Description: Auxiliary lemma 3 for gausslemma2d 26427. (Contributed by AV, 13-Jul-2021.) |
Ref | Expression |
---|---|
gausslemma2dlem0a.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
gausslemma2dlem0b.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
Ref | Expression |
---|---|
gausslemma2dlem0c | ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2dlem0a.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
2 | eldifi 4057 | . . . . 5 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) |
4 | gausslemma2dlem0b.h | . . . . . 6 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
5 | 1, 4 | gausslemma2dlem0b 26410 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
6 | 5 | nnnn0d 12223 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ℕ0) |
7 | 3, 6 | jca 511 | . . 3 ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0)) |
8 | prmnn 16307 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
9 | nnre 11910 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℝ) | |
10 | peano2rem 11218 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ) | |
11 | 9, 10 | syl 17 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℝ) |
12 | 2re 11977 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
13 | 12 | a1i 11 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → 2 ∈ ℝ) |
14 | 13, 9 | remulcld 10936 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → (2 · 𝑃) ∈ ℝ) |
15 | 9 | ltm1d 11837 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) < 𝑃) |
16 | nnnn0 12170 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
17 | 16 | nn0ge0d 12226 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → 0 ≤ 𝑃) |
18 | 1le2 12112 | . . . . . . . . . 10 ⊢ 1 ≤ 2 | |
19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → 1 ≤ 2) |
20 | 9, 13, 17, 19 | lemulge12d 11843 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 𝑃 ≤ (2 · 𝑃)) |
21 | 11, 9, 14, 15, 20 | ltletrd 11065 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) < (2 · 𝑃)) |
22 | 2pos 12006 | . . . . . . . . . 10 ⊢ 0 < 2 | |
23 | 12, 22 | pm3.2i 470 | . . . . . . . . 9 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
24 | 23 | a1i 11 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2)) |
25 | ltdivmul 11780 | . . . . . . . 8 ⊢ (((𝑃 − 1) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃))) | |
26 | 11, 9, 24, 25 | syl3anc 1369 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃))) |
27 | 21, 26 | mpbird 256 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → ((𝑃 − 1) / 2) < 𝑃) |
28 | 2, 8, 27 | 3syl 18 | . . . . 5 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) < 𝑃) |
29 | 1, 28 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑃 − 1) / 2) < 𝑃) |
30 | 4, 29 | eqbrtrid 5105 | . . 3 ⊢ (𝜑 → 𝐻 < 𝑃) |
31 | prmndvdsfaclt 16358 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0) → (𝐻 < 𝑃 → ¬ 𝑃 ∥ (!‘𝐻))) | |
32 | 7, 30, 31 | sylc 65 | . 2 ⊢ (𝜑 → ¬ 𝑃 ∥ (!‘𝐻)) |
33 | 6 | faccld 13926 | . . . . . 6 ⊢ (𝜑 → (!‘𝐻) ∈ ℕ) |
34 | 33 | nnzd 12354 | . . . . 5 ⊢ (𝜑 → (!‘𝐻) ∈ ℤ) |
35 | nnz 12272 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℤ) | |
36 | 2, 8, 35 | 3syl 18 | . . . . . 6 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ) |
37 | 1, 36 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
38 | 34, 37 | gcdcomd 16149 | . . . 4 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = (𝑃 gcd (!‘𝐻))) |
39 | 38 | eqeq1d 2740 | . . 3 ⊢ (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ (𝑃 gcd (!‘𝐻)) = 1)) |
40 | coprm 16344 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (!‘𝐻) ∈ ℤ) → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1)) | |
41 | 3, 34, 40 | syl2anc 583 | . . 3 ⊢ (𝜑 → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1)) |
42 | 39, 41 | bitr4d 281 | . 2 ⊢ (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ ¬ 𝑃 ∥ (!‘𝐻))) |
43 | 32, 42 | mpbird 256 | 1 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 {csn 4558 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 · cmul 10807 < clt 10940 ≤ cle 10941 − cmin 11135 / cdiv 11562 ℕcn 11903 2c2 11958 ℕ0cn0 12163 ℤcz 12249 !cfa 13915 ∥ cdvds 15891 gcd cgcd 16129 ℙcprime 16304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-gcd 16130 df-prm 16305 |
This theorem is referenced by: gausslemma2dlem7 26426 |
Copyright terms: Public domain | W3C validator |