![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gausslemma2dlem0c | Structured version Visualization version GIF version |
Description: Auxiliary lemma 3 for gausslemma2d 25512. (Contributed by AV, 13-Jul-2021.) |
Ref | Expression |
---|---|
gausslemma2dlem0a.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
gausslemma2dlem0b.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
Ref | Expression |
---|---|
gausslemma2dlem0c | ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2dlem0a.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
2 | eldifi 3959 | . . . . 5 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) |
4 | gausslemma2dlem0b.h | . . . . . 6 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
5 | 1, 4 | gausslemma2dlem0b 25495 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
6 | 5 | nnnn0d 11678 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ℕ0) |
7 | 3, 6 | jca 509 | . . 3 ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0)) |
8 | prmnn 15760 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
9 | nnre 11358 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℝ) | |
10 | peano2rem 10669 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ) | |
11 | 9, 10 | syl 17 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℝ) |
12 | 2re 11425 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
13 | 12 | a1i 11 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → 2 ∈ ℝ) |
14 | 13, 9 | remulcld 10387 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → (2 · 𝑃) ∈ ℝ) |
15 | 9 | ltm1d 11286 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) < 𝑃) |
16 | nnnn0 11626 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
17 | 16 | nn0ge0d 11681 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → 0 ≤ 𝑃) |
18 | 1le2 11567 | . . . . . . . . . 10 ⊢ 1 ≤ 2 | |
19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → 1 ≤ 2) |
20 | 9, 13, 17, 19 | lemulge12d 11292 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 𝑃 ≤ (2 · 𝑃)) |
21 | 11, 9, 14, 15, 20 | ltletrd 10516 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) < (2 · 𝑃)) |
22 | 2pos 11461 | . . . . . . . . . 10 ⊢ 0 < 2 | |
23 | 12, 22 | pm3.2i 464 | . . . . . . . . 9 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
24 | 23 | a1i 11 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2)) |
25 | ltdivmul 11228 | . . . . . . . 8 ⊢ (((𝑃 − 1) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃))) | |
26 | 11, 9, 24, 25 | syl3anc 1496 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃))) |
27 | 21, 26 | mpbird 249 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → ((𝑃 − 1) / 2) < 𝑃) |
28 | 2, 8, 27 | 3syl 18 | . . . . 5 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) < 𝑃) |
29 | 1, 28 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑃 − 1) / 2) < 𝑃) |
30 | 4, 29 | syl5eqbr 4908 | . . 3 ⊢ (𝜑 → 𝐻 < 𝑃) |
31 | prmndvdsfaclt 15806 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0) → (𝐻 < 𝑃 → ¬ 𝑃 ∥ (!‘𝐻))) | |
32 | 7, 30, 31 | sylc 65 | . 2 ⊢ (𝜑 → ¬ 𝑃 ∥ (!‘𝐻)) |
33 | 6 | faccld 13364 | . . . . . 6 ⊢ (𝜑 → (!‘𝐻) ∈ ℕ) |
34 | 33 | nnzd 11809 | . . . . 5 ⊢ (𝜑 → (!‘𝐻) ∈ ℤ) |
35 | nnz 11727 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℤ) | |
36 | 2, 8, 35 | 3syl 18 | . . . . . 6 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℤ) |
37 | 1, 36 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
38 | gcdcom 15608 | . . . . 5 ⊢ (((!‘𝐻) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((!‘𝐻) gcd 𝑃) = (𝑃 gcd (!‘𝐻))) | |
39 | 34, 37, 38 | syl2anc 581 | . . . 4 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = (𝑃 gcd (!‘𝐻))) |
40 | 39 | eqeq1d 2827 | . . 3 ⊢ (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ (𝑃 gcd (!‘𝐻)) = 1)) |
41 | coprm 15794 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (!‘𝐻) ∈ ℤ) → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1)) | |
42 | 3, 34, 41 | syl2anc 581 | . . 3 ⊢ (𝜑 → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1)) |
43 | 40, 42 | bitr4d 274 | . 2 ⊢ (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ ¬ 𝑃 ∥ (!‘𝐻))) |
44 | 32, 43 | mpbird 249 | 1 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∖ cdif 3795 {csn 4397 class class class wbr 4873 ‘cfv 6123 (class class class)co 6905 ℝcr 10251 0cc0 10252 1c1 10253 · cmul 10257 < clt 10391 ≤ cle 10392 − cmin 10585 / cdiv 11009 ℕcn 11350 2c2 11406 ℕ0cn0 11618 ℤcz 11704 !cfa 13353 ∥ cdvds 15357 gcd cgcd 15589 ℙcprime 15757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-pre-sup 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-2o 7827 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-sup 8617 df-inf 8618 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-nn 11351 df-2 11414 df-3 11415 df-4 11416 df-n0 11619 df-z 11705 df-uz 11969 df-rp 12113 df-fl 12888 df-mod 12964 df-seq 13096 df-exp 13155 df-fac 13354 df-cj 14216 df-re 14217 df-im 14218 df-sqrt 14352 df-abs 14353 df-dvds 15358 df-gcd 15590 df-prm 15758 |
This theorem is referenced by: gausslemma2dlem7 25511 |
Copyright terms: Public domain | W3C validator |