| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gausslemma2dlem0c | Structured version Visualization version GIF version | ||
| Description: Auxiliary lemma 3 for gausslemma2d 27313. (Contributed by AV, 13-Jul-2021.) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0a.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| gausslemma2dlem0b.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
| Ref | Expression |
|---|---|
| gausslemma2dlem0c | ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2dlem0a.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 2 | eldifi 4081 | . . . . 5 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 4 | gausslemma2dlem0b.h | . . . . . 6 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
| 5 | 1, 4 | gausslemma2dlem0b 27296 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
| 6 | 5 | nnnn0d 12442 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ℕ0) |
| 7 | 3, 6 | jca 511 | . . 3 ⊢ (𝜑 → (𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0)) |
| 8 | prmnn 16585 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 9 | nnre 12132 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℝ) | |
| 10 | peano2rem 11428 | . . . . . . . 8 ⊢ (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ) | |
| 11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℝ) |
| 12 | 2re 12199 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
| 13 | 12 | a1i 11 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 2 ∈ ℝ) |
| 14 | 13, 9 | remulcld 11142 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (2 · 𝑃) ∈ ℝ) |
| 15 | 9 | ltm1d 12054 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) < 𝑃) |
| 16 | nnnn0 12388 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0) | |
| 17 | 16 | nn0ge0d 12445 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 0 ≤ 𝑃) |
| 18 | 1le2 12329 | . . . . . . . . 9 ⊢ 1 ≤ 2 | |
| 19 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → 1 ≤ 2) |
| 20 | 9, 13, 17, 19 | lemulge12d 12060 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → 𝑃 ≤ (2 · 𝑃)) |
| 21 | 11, 9, 14, 15, 20 | ltletrd 11273 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → (𝑃 − 1) < (2 · 𝑃)) |
| 22 | 2pos 12228 | . . . . . . . . 9 ⊢ 0 < 2 | |
| 23 | 12, 22 | pm3.2i 470 | . . . . . . . 8 ⊢ (2 ∈ ℝ ∧ 0 < 2) |
| 24 | 23 | a1i 11 | . . . . . . 7 ⊢ (𝑃 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2)) |
| 25 | ltdivmul 11997 | . . . . . . 7 ⊢ (((𝑃 − 1) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃))) | |
| 26 | 11, 9, 24, 25 | syl3anc 1373 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃))) |
| 27 | 21, 26 | mpbird 257 | . . . . 5 ⊢ (𝑃 ∈ ℕ → ((𝑃 − 1) / 2) < 𝑃) |
| 28 | 1, 2, 8, 27 | 4syl 19 | . . . 4 ⊢ (𝜑 → ((𝑃 − 1) / 2) < 𝑃) |
| 29 | 4, 28 | eqbrtrid 5126 | . . 3 ⊢ (𝜑 → 𝐻 < 𝑃) |
| 30 | prmndvdsfaclt 16636 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0) → (𝐻 < 𝑃 → ¬ 𝑃 ∥ (!‘𝐻))) | |
| 31 | 7, 29, 30 | sylc 65 | . 2 ⊢ (𝜑 → ¬ 𝑃 ∥ (!‘𝐻)) |
| 32 | 6 | faccld 14191 | . . . . . 6 ⊢ (𝜑 → (!‘𝐻) ∈ ℕ) |
| 33 | 32 | nnzd 12495 | . . . . 5 ⊢ (𝜑 → (!‘𝐻) ∈ ℤ) |
| 34 | nnz 12489 | . . . . . 6 ⊢ (𝑃 ∈ ℕ → 𝑃 ∈ ℤ) | |
| 35 | 1, 2, 8, 34 | 4syl 19 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 36 | 33, 35 | gcdcomd 16425 | . . . 4 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = (𝑃 gcd (!‘𝐻))) |
| 37 | 36 | eqeq1d 2733 | . . 3 ⊢ (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ (𝑃 gcd (!‘𝐻)) = 1)) |
| 38 | coprm 16622 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (!‘𝐻) ∈ ℤ) → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1)) | |
| 39 | 3, 33, 38 | syl2anc 584 | . . 3 ⊢ (𝜑 → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1)) |
| 40 | 37, 39 | bitr4d 282 | . 2 ⊢ (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ ¬ 𝑃 ∥ (!‘𝐻))) |
| 41 | 31, 40 | mpbird 257 | 1 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 {csn 4576 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 · cmul 11011 < clt 11146 ≤ cle 11147 − cmin 11344 / cdiv 11774 ℕcn 12125 2c2 12180 ℕ0cn0 12381 ℤcz 12468 !cfa 14180 ∥ cdvds 16163 gcd cgcd 16405 ℙcprime 16582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-fac 14181 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-prm 16583 |
| This theorem is referenced by: gausslemma2dlem7 27312 |
| Copyright terms: Public domain | W3C validator |