MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem0c Structured version   Visualization version   GIF version

Theorem gausslemma2dlem0c 27402
Description: Auxiliary lemma 3 for gausslemma2d 27418. (Contributed by AV, 13-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0a.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2dlem0b.h 𝐻 = ((𝑃 − 1) / 2)
Assertion
Ref Expression
gausslemma2dlem0c (𝜑 → ((!‘𝐻) gcd 𝑃) = 1)

Proof of Theorem gausslemma2dlem0c
StepHypRef Expression
1 gausslemma2dlem0a.p . . . . 5 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 eldifi 4131 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
31, 2syl 17 . . . 4 (𝜑𝑃 ∈ ℙ)
4 gausslemma2dlem0b.h . . . . . 6 𝐻 = ((𝑃 − 1) / 2)
51, 4gausslemma2dlem0b 27401 . . . . 5 (𝜑𝐻 ∈ ℕ)
65nnnn0d 12587 . . . 4 (𝜑𝐻 ∈ ℕ0)
73, 6jca 511 . . 3 (𝜑 → (𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0))
8 prmnn 16711 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
9 nnre 12273 . . . . . . . 8 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
10 peano2rem 11576 . . . . . . . 8 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
119, 10syl 17 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℝ)
12 2re 12340 . . . . . . . . 9 2 ∈ ℝ
1312a1i 11 . . . . . . . 8 (𝑃 ∈ ℕ → 2 ∈ ℝ)
1413, 9remulcld 11291 . . . . . . 7 (𝑃 ∈ ℕ → (2 · 𝑃) ∈ ℝ)
159ltm1d 12200 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) < 𝑃)
16 nnnn0 12533 . . . . . . . . 9 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
1716nn0ge0d 12590 . . . . . . . 8 (𝑃 ∈ ℕ → 0 ≤ 𝑃)
18 1le2 12475 . . . . . . . . 9 1 ≤ 2
1918a1i 11 . . . . . . . 8 (𝑃 ∈ ℕ → 1 ≤ 2)
209, 13, 17, 19lemulge12d 12206 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ≤ (2 · 𝑃))
2111, 9, 14, 15, 20ltletrd 11421 . . . . . 6 (𝑃 ∈ ℕ → (𝑃 − 1) < (2 · 𝑃))
22 2pos 12369 . . . . . . . . 9 0 < 2
2312, 22pm3.2i 470 . . . . . . . 8 (2 ∈ ℝ ∧ 0 < 2)
2423a1i 11 . . . . . . 7 (𝑃 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2))
25 ltdivmul 12143 . . . . . . 7 (((𝑃 − 1) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃)))
2611, 9, 24, 25syl3anc 1373 . . . . . 6 (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃)))
2721, 26mpbird 257 . . . . 5 (𝑃 ∈ ℕ → ((𝑃 − 1) / 2) < 𝑃)
281, 2, 8, 274syl 19 . . . 4 (𝜑 → ((𝑃 − 1) / 2) < 𝑃)
294, 28eqbrtrid 5178 . . 3 (𝜑𝐻 < 𝑃)
30 prmndvdsfaclt 16762 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0) → (𝐻 < 𝑃 → ¬ 𝑃 ∥ (!‘𝐻)))
317, 29, 30sylc 65 . 2 (𝜑 → ¬ 𝑃 ∥ (!‘𝐻))
326faccld 14323 . . . . . 6 (𝜑 → (!‘𝐻) ∈ ℕ)
3332nnzd 12640 . . . . 5 (𝜑 → (!‘𝐻) ∈ ℤ)
34 nnz 12634 . . . . . 6 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
351, 2, 8, 344syl 19 . . . . 5 (𝜑𝑃 ∈ ℤ)
3633, 35gcdcomd 16551 . . . 4 (𝜑 → ((!‘𝐻) gcd 𝑃) = (𝑃 gcd (!‘𝐻)))
3736eqeq1d 2739 . . 3 (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ (𝑃 gcd (!‘𝐻)) = 1))
38 coprm 16748 . . . 4 ((𝑃 ∈ ℙ ∧ (!‘𝐻) ∈ ℤ) → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1))
393, 33, 38syl2anc 584 . . 3 (𝜑 → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1))
4037, 39bitr4d 282 . 2 (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ ¬ 𝑃 ∥ (!‘𝐻)))
4131, 40mpbird 257 1 (𝜑 → ((!‘𝐻) gcd 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cdif 3948  {csn 4626   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cz 12613  !cfa 14312  cdvds 16290   gcd cgcd 16531  cprime 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-prm 16709
This theorem is referenced by:  gausslemma2dlem7  27417
  Copyright terms: Public domain W3C validator