MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem0c Structured version   Visualization version   GIF version

Theorem gausslemma2dlem0c 27297
Description: Auxiliary lemma 3 for gausslemma2d 27313. (Contributed by AV, 13-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0a.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2dlem0b.h 𝐻 = ((𝑃 − 1) / 2)
Assertion
Ref Expression
gausslemma2dlem0c (𝜑 → ((!‘𝐻) gcd 𝑃) = 1)

Proof of Theorem gausslemma2dlem0c
StepHypRef Expression
1 gausslemma2dlem0a.p . . . . 5 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 eldifi 4081 . . . . 5 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
31, 2syl 17 . . . 4 (𝜑𝑃 ∈ ℙ)
4 gausslemma2dlem0b.h . . . . . 6 𝐻 = ((𝑃 − 1) / 2)
51, 4gausslemma2dlem0b 27296 . . . . 5 (𝜑𝐻 ∈ ℕ)
65nnnn0d 12442 . . . 4 (𝜑𝐻 ∈ ℕ0)
73, 6jca 511 . . 3 (𝜑 → (𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0))
8 prmnn 16585 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
9 nnre 12132 . . . . . . . 8 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
10 peano2rem 11428 . . . . . . . 8 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
119, 10syl 17 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℝ)
12 2re 12199 . . . . . . . . 9 2 ∈ ℝ
1312a1i 11 . . . . . . . 8 (𝑃 ∈ ℕ → 2 ∈ ℝ)
1413, 9remulcld 11142 . . . . . . 7 (𝑃 ∈ ℕ → (2 · 𝑃) ∈ ℝ)
159ltm1d 12054 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) < 𝑃)
16 nnnn0 12388 . . . . . . . . 9 (𝑃 ∈ ℕ → 𝑃 ∈ ℕ0)
1716nn0ge0d 12445 . . . . . . . 8 (𝑃 ∈ ℕ → 0 ≤ 𝑃)
18 1le2 12329 . . . . . . . . 9 1 ≤ 2
1918a1i 11 . . . . . . . 8 (𝑃 ∈ ℕ → 1 ≤ 2)
209, 13, 17, 19lemulge12d 12060 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃 ≤ (2 · 𝑃))
2111, 9, 14, 15, 20ltletrd 11273 . . . . . 6 (𝑃 ∈ ℕ → (𝑃 − 1) < (2 · 𝑃))
22 2pos 12228 . . . . . . . . 9 0 < 2
2312, 22pm3.2i 470 . . . . . . . 8 (2 ∈ ℝ ∧ 0 < 2)
2423a1i 11 . . . . . . 7 (𝑃 ∈ ℕ → (2 ∈ ℝ ∧ 0 < 2))
25 ltdivmul 11997 . . . . . . 7 (((𝑃 − 1) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃)))
2611, 9, 24, 25syl3anc 1373 . . . . . 6 (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) < 𝑃 ↔ (𝑃 − 1) < (2 · 𝑃)))
2721, 26mpbird 257 . . . . 5 (𝑃 ∈ ℕ → ((𝑃 − 1) / 2) < 𝑃)
281, 2, 8, 274syl 19 . . . 4 (𝜑 → ((𝑃 − 1) / 2) < 𝑃)
294, 28eqbrtrid 5126 . . 3 (𝜑𝐻 < 𝑃)
30 prmndvdsfaclt 16636 . . 3 ((𝑃 ∈ ℙ ∧ 𝐻 ∈ ℕ0) → (𝐻 < 𝑃 → ¬ 𝑃 ∥ (!‘𝐻)))
317, 29, 30sylc 65 . 2 (𝜑 → ¬ 𝑃 ∥ (!‘𝐻))
326faccld 14191 . . . . . 6 (𝜑 → (!‘𝐻) ∈ ℕ)
3332nnzd 12495 . . . . 5 (𝜑 → (!‘𝐻) ∈ ℤ)
34 nnz 12489 . . . . . 6 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
351, 2, 8, 344syl 19 . . . . 5 (𝜑𝑃 ∈ ℤ)
3633, 35gcdcomd 16425 . . . 4 (𝜑 → ((!‘𝐻) gcd 𝑃) = (𝑃 gcd (!‘𝐻)))
3736eqeq1d 2733 . . 3 (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ (𝑃 gcd (!‘𝐻)) = 1))
38 coprm 16622 . . . 4 ((𝑃 ∈ ℙ ∧ (!‘𝐻) ∈ ℤ) → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1))
393, 33, 38syl2anc 584 . . 3 (𝜑 → (¬ 𝑃 ∥ (!‘𝐻) ↔ (𝑃 gcd (!‘𝐻)) = 1))
4037, 39bitr4d 282 . 2 (𝜑 → (((!‘𝐻) gcd 𝑃) = 1 ↔ ¬ 𝑃 ∥ (!‘𝐻)))
4131, 40mpbird 257 1 (𝜑 → ((!‘𝐻) gcd 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cdif 3899  {csn 4576   class class class wbr 5091  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   · cmul 11011   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  2c2 12180  0cn0 12381  cz 12468  !cfa 14180  cdvds 16163   gcd cgcd 16405  cprime 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583
This theorem is referenced by:  gausslemma2dlem7  27312
  Copyright terms: Public domain W3C validator