Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aks4d1p8d3 | Structured version Visualization version GIF version |
Description: The remainder of a division with its maximal prime power is coprime with that prime power. (Contributed by metakunt, 13-Nov-2024.) |
Ref | Expression |
---|---|
aks4d1p8d3.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
aks4d1p8d3.2 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
aks4d1p8d3.3 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
Ref | Expression |
---|---|
aks4d1p8d3 | ⊢ (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aks4d1p8d3.2 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
2 | aks4d1p8d3.1 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | pcdvds 16576 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) | |
4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) |
5 | prmnn 16390 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
6 | 1, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
7 | 6 | nnzd 12436 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
8 | 1, 2 | pccld 16562 | . . . . . 6 ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0) |
9 | 7, 8 | zexpcld 13819 | . . . . 5 ⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ) |
10 | 7 | zcnd 12438 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
11 | 0red 10989 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ ℝ) | |
12 | 1red 10987 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ ℝ) | |
13 | 7 | zred 12437 | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
14 | 0lt1 11508 | . . . . . . . . . 10 ⊢ 0 < 1 | |
15 | 14 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 0 < 1) |
16 | prmgt1 16413 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
17 | 1, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 1 < 𝑃) |
18 | 11, 12, 13, 15, 17 | lttrd 11147 | . . . . . . . 8 ⊢ (𝜑 → 0 < 𝑃) |
19 | 11, 18 | ltned 11122 | . . . . . . 7 ⊢ (𝜑 → 0 ≠ 𝑃) |
20 | 19 | necomd 3001 | . . . . . 6 ⊢ (𝜑 → 𝑃 ≠ 0) |
21 | 8 | nn0zd 12435 | . . . . . 6 ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℤ) |
22 | 10, 20, 21 | expne0d 13881 | . . . . 5 ⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ≠ 0) |
23 | 2 | nnzd 12436 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
24 | dvdsval2 15977 | . . . . 5 ⊢ (((𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑁)) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ)) | |
25 | 9, 22, 23, 24 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ)) |
26 | 4, 25 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ) |
27 | 26, 9 | gcdcomd 16232 | . 2 ⊢ (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = ((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))))) |
28 | pcndvds2 16580 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) | |
29 | 1, 2, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) |
30 | coprm 16427 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ) → (¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)) | |
31 | 1, 26, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)) |
32 | 29, 31 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1) |
33 | aks4d1p8d3.3 | . . . . 5 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
34 | pcelnn 16582 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃 ∥ 𝑁)) | |
35 | 1, 2, 34 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃 ∥ 𝑁)) |
36 | 33, 35 | mpbird 256 | . . . 4 ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ) |
37 | rpexp 16438 | . . . 4 ⊢ ((𝑃 ∈ ℤ ∧ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ ∧ (𝑃 pCnt 𝑁) ∈ ℕ) → (((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1 ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)) | |
38 | 7, 26, 36, 37 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1 ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)) |
39 | 32, 38 | mpbird 256 | . 2 ⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1) |
40 | 27, 39 | eqtrd 2780 | 1 ⊢ (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 class class class wbr 5079 (class class class)co 7272 0cc0 10882 1c1 10883 < clt 11020 / cdiv 11643 ℕcn 11984 ℤcz 12330 ↑cexp 13793 ∥ cdvds 15974 gcd cgcd 16212 ℙcprime 16387 pCnt cpc 16548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-pre-mulgt0 10959 ax-pre-sup 10960 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-om 7708 df-1st 7825 df-2nd 7826 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-1o 8289 df-2o 8290 df-er 8490 df-en 8726 df-dom 8727 df-sdom 8728 df-fin 8729 df-sup 9189 df-inf 9190 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-sub 11218 df-neg 11219 df-div 11644 df-nn 11985 df-2 12047 df-3 12048 df-n0 12245 df-z 12331 df-uz 12594 df-q 12700 df-rp 12742 df-fz 13251 df-fl 13523 df-mod 13601 df-seq 13733 df-exp 13794 df-cj 14821 df-re 14822 df-im 14823 df-sqrt 14957 df-abs 14958 df-dvds 15975 df-gcd 16213 df-prm 16388 df-pc 16549 |
This theorem is referenced by: aks4d1p8 40104 |
Copyright terms: Public domain | W3C validator |