Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aks4d1p8d3 | Structured version Visualization version GIF version |
Description: The remainder of a division with its maximal prime power is coprime with that prime power. (Contributed by metakunt, 13-Nov-2024.) |
Ref | Expression |
---|---|
aks4d1p8d3.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
aks4d1p8d3.2 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
aks4d1p8d3.3 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
Ref | Expression |
---|---|
aks4d1p8d3 | ⊢ (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aks4d1p8d3.2 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
2 | aks4d1p8d3.1 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | pcdvds 16493 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) | |
4 | 1, 2, 3 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) |
5 | prmnn 16307 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
6 | 1, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
7 | 6 | nnzd 12354 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
8 | 1, 2 | pccld 16479 | . . . . . 6 ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0) |
9 | 7, 8 | zexpcld 13736 | . . . . 5 ⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ) |
10 | 7 | zcnd 12356 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
11 | 0red 10909 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ ℝ) | |
12 | 1red 10907 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ ℝ) | |
13 | 7 | zred 12355 | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
14 | 0lt1 11427 | . . . . . . . . . 10 ⊢ 0 < 1 | |
15 | 14 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 0 < 1) |
16 | prmgt1 16330 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
17 | 1, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 1 < 𝑃) |
18 | 11, 12, 13, 15, 17 | lttrd 11066 | . . . . . . . 8 ⊢ (𝜑 → 0 < 𝑃) |
19 | 11, 18 | ltned 11041 | . . . . . . 7 ⊢ (𝜑 → 0 ≠ 𝑃) |
20 | 19 | necomd 2998 | . . . . . 6 ⊢ (𝜑 → 𝑃 ≠ 0) |
21 | 8 | nn0zd 12353 | . . . . . 6 ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℤ) |
22 | 10, 20, 21 | expne0d 13798 | . . . . 5 ⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ≠ 0) |
23 | 2 | nnzd 12354 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
24 | dvdsval2 15894 | . . . . 5 ⊢ (((𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑁)) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ)) | |
25 | 9, 22, 23, 24 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ)) |
26 | 4, 25 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ) |
27 | 26, 9 | gcdcomd 16149 | . 2 ⊢ (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = ((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))))) |
28 | pcndvds2 16497 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) | |
29 | 1, 2, 28 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) |
30 | coprm 16344 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ) → (¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)) | |
31 | 1, 26, 30 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)) |
32 | 29, 31 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1) |
33 | aks4d1p8d3.3 | . . . . 5 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
34 | pcelnn 16499 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃 ∥ 𝑁)) | |
35 | 1, 2, 34 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃 ∥ 𝑁)) |
36 | 33, 35 | mpbird 256 | . . . 4 ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ) |
37 | rpexp 16355 | . . . 4 ⊢ ((𝑃 ∈ ℤ ∧ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ ∧ (𝑃 pCnt 𝑁) ∈ ℕ) → (((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1 ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)) | |
38 | 7, 26, 36, 37 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1 ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)) |
39 | 32, 38 | mpbird 256 | . 2 ⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1) |
40 | 27, 39 | eqtrd 2778 | 1 ⊢ (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 (class class class)co 7255 0cc0 10802 1c1 10803 < clt 10940 / cdiv 11562 ℕcn 11903 ℤcz 12249 ↑cexp 13710 ∥ cdvds 15891 gcd cgcd 16129 ℙcprime 16304 pCnt cpc 16465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-fz 13169 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-gcd 16130 df-prm 16305 df-pc 16466 |
This theorem is referenced by: aks4d1p8 40023 |
Copyright terms: Public domain | W3C validator |