Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p8d3 Structured version   Visualization version   GIF version

Theorem aks4d1p8d3 42178
Description: The remainder of a division with its maximal prime power is coprime with that prime power. (Contributed by metakunt, 13-Nov-2024.)
Hypotheses
Ref Expression
aks4d1p8d3.1 (𝜑𝑁 ∈ ℕ)
aks4d1p8d3.2 (𝜑𝑃 ∈ ℙ)
aks4d1p8d3.3 (𝜑𝑃𝑁)
Assertion
Ref Expression
aks4d1p8d3 (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1)

Proof of Theorem aks4d1p8d3
StepHypRef Expression
1 aks4d1p8d3.2 . . . . 5 (𝜑𝑃 ∈ ℙ)
2 aks4d1p8d3.1 . . . . 5 (𝜑𝑁 ∈ ℕ)
3 pcdvds 16776 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁)
41, 2, 3syl2anc 584 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁)
5 prmnn 16585 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
61, 5syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℕ)
76nnzd 12495 . . . . . 6 (𝜑𝑃 ∈ ℤ)
81, 2pccld 16762 . . . . . 6 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0)
97, 8zexpcld 13994 . . . . 5 (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ)
107zcnd 12578 . . . . . 6 (𝜑𝑃 ∈ ℂ)
11 0red 11115 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
12 1red 11113 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
137zred 12577 . . . . . . . . 9 (𝜑𝑃 ∈ ℝ)
14 0lt1 11639 . . . . . . . . . 10 0 < 1
1514a1i 11 . . . . . . . . 9 (𝜑 → 0 < 1)
16 prmgt1 16608 . . . . . . . . . 10 (𝑃 ∈ ℙ → 1 < 𝑃)
171, 16syl 17 . . . . . . . . 9 (𝜑 → 1 < 𝑃)
1811, 12, 13, 15, 17lttrd 11274 . . . . . . . 8 (𝜑 → 0 < 𝑃)
1911, 18ltned 11249 . . . . . . 7 (𝜑 → 0 ≠ 𝑃)
2019necomd 2983 . . . . . 6 (𝜑𝑃 ≠ 0)
218nn0zd 12494 . . . . . 6 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℤ)
2210, 20, 21expne0d 14059 . . . . 5 (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ≠ 0)
232nnzd 12495 . . . . 5 (𝜑𝑁 ∈ ℤ)
24 dvdsval2 16166 . . . . 5 (((𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑁)) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ))
259, 22, 23, 24syl3anc 1373 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ))
264, 25mpbid 232 . . 3 (𝜑 → (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ)
2726, 9gcdcomd 16425 . 2 (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = ((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))))
28 pcndvds2 16780 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))))
291, 2, 28syl2anc 584 . . . 4 (𝜑 → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))))
30 coprm 16622 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ) → (¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1))
311, 26, 30syl2anc 584 . . . 4 (𝜑 → (¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1))
3229, 31mpbid 232 . . 3 (𝜑 → (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)
33 aks4d1p8d3.3 . . . . 5 (𝜑𝑃𝑁)
34 pcelnn 16782 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃𝑁))
351, 2, 34syl2anc 584 . . . . 5 (𝜑 → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃𝑁))
3633, 35mpbird 257 . . . 4 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ)
37 rpexp 16633 . . . 4 ((𝑃 ∈ ℤ ∧ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ ∧ (𝑃 pCnt 𝑁) ∈ ℕ) → (((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1 ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1))
387, 26, 36, 37syl3anc 1373 . . 3 (𝜑 → (((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1 ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1))
3932, 38mpbird 257 . 2 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)
4027, 39eqtrd 2766 1 (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  (class class class)co 7346  0cc0 11006  1c1 11007   < clt 11146   / cdiv 11774  cn 12125  cz 12468  cexp 13968  cdvds 16163   gcd cgcd 16405  cprime 16582   pCnt cpc 16748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-fz 13408  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749
This theorem is referenced by:  aks4d1p8  42179
  Copyright terms: Public domain W3C validator