Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p8d3 Structured version   Visualization version   GIF version

Theorem aks4d1p8d3 42068
Description: The remainder of a division with its maximal prime power is coprime with that prime power. (Contributed by metakunt, 13-Nov-2024.)
Hypotheses
Ref Expression
aks4d1p8d3.1 (𝜑𝑁 ∈ ℕ)
aks4d1p8d3.2 (𝜑𝑃 ∈ ℙ)
aks4d1p8d3.3 (𝜑𝑃𝑁)
Assertion
Ref Expression
aks4d1p8d3 (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1)

Proof of Theorem aks4d1p8d3
StepHypRef Expression
1 aks4d1p8d3.2 . . . . 5 (𝜑𝑃 ∈ ℙ)
2 aks4d1p8d3.1 . . . . 5 (𝜑𝑁 ∈ ℕ)
3 pcdvds 16898 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁)
41, 2, 3syl2anc 584 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁)
5 prmnn 16708 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
61, 5syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℕ)
76nnzd 12638 . . . . . 6 (𝜑𝑃 ∈ ℤ)
81, 2pccld 16884 . . . . . 6 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0)
97, 8zexpcld 14125 . . . . 5 (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ)
107zcnd 12721 . . . . . 6 (𝜑𝑃 ∈ ℂ)
11 0red 11262 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
12 1red 11260 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
137zred 12720 . . . . . . . . 9 (𝜑𝑃 ∈ ℝ)
14 0lt1 11783 . . . . . . . . . 10 0 < 1
1514a1i 11 . . . . . . . . 9 (𝜑 → 0 < 1)
16 prmgt1 16731 . . . . . . . . . 10 (𝑃 ∈ ℙ → 1 < 𝑃)
171, 16syl 17 . . . . . . . . 9 (𝜑 → 1 < 𝑃)
1811, 12, 13, 15, 17lttrd 11420 . . . . . . . 8 (𝜑 → 0 < 𝑃)
1911, 18ltned 11395 . . . . . . 7 (𝜑 → 0 ≠ 𝑃)
2019necomd 2994 . . . . . 6 (𝜑𝑃 ≠ 0)
218nn0zd 12637 . . . . . 6 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℤ)
2210, 20, 21expne0d 14189 . . . . 5 (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ≠ 0)
232nnzd 12638 . . . . 5 (𝜑𝑁 ∈ ℤ)
24 dvdsval2 16290 . . . . 5 (((𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑁)) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ))
259, 22, 23, 24syl3anc 1370 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ))
264, 25mpbid 232 . . 3 (𝜑 → (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ)
2726, 9gcdcomd 16548 . 2 (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = ((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))))
28 pcndvds2 16902 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))))
291, 2, 28syl2anc 584 . . . 4 (𝜑 → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))))
30 coprm 16745 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ) → (¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1))
311, 26, 30syl2anc 584 . . . 4 (𝜑 → (¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1))
3229, 31mpbid 232 . . 3 (𝜑 → (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)
33 aks4d1p8d3.3 . . . . 5 (𝜑𝑃𝑁)
34 pcelnn 16904 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃𝑁))
351, 2, 34syl2anc 584 . . . . 5 (𝜑 → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃𝑁))
3633, 35mpbird 257 . . . 4 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ)
37 rpexp 16756 . . . 4 ((𝑃 ∈ ℤ ∧ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ ∧ (𝑃 pCnt 𝑁) ∈ ℕ) → (((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1 ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1))
387, 26, 36, 37syl3anc 1370 . . 3 (𝜑 → (((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1 ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1))
3932, 38mpbird 257 . 2 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)
4027, 39eqtrd 2775 1 (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  (class class class)co 7431  0cc0 11153  1c1 11154   < clt 11293   / cdiv 11918  cn 12264  cz 12611  cexp 14099  cdvds 16287   gcd cgcd 16528  cprime 16705   pCnt cpc 16870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-fz 13545  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706  df-pc 16871
This theorem is referenced by:  aks4d1p8  42069
  Copyright terms: Public domain W3C validator