![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aks4d1p8d3 | Structured version Visualization version GIF version |
Description: The remainder of a division with its maximal prime power is coprime with that prime power. (Contributed by metakunt, 13-Nov-2024.) |
Ref | Expression |
---|---|
aks4d1p8d3.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
aks4d1p8d3.2 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
aks4d1p8d3.3 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
Ref | Expression |
---|---|
aks4d1p8d3 | ⊢ (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aks4d1p8d3.2 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
2 | aks4d1p8d3.1 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
3 | pcdvds 16793 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) | |
4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) |
5 | prmnn 16607 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
6 | 1, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
7 | 6 | nnzd 12581 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
8 | 1, 2 | pccld 16779 | . . . . . 6 ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0) |
9 | 7, 8 | zexpcld 14049 | . . . . 5 ⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ) |
10 | 7 | zcnd 12663 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
11 | 0red 11213 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ ℝ) | |
12 | 1red 11211 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ ℝ) | |
13 | 7 | zred 12662 | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
14 | 0lt1 11732 | . . . . . . . . . 10 ⊢ 0 < 1 | |
15 | 14 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 0 < 1) |
16 | prmgt1 16630 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
17 | 1, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 1 < 𝑃) |
18 | 11, 12, 13, 15, 17 | lttrd 11371 | . . . . . . . 8 ⊢ (𝜑 → 0 < 𝑃) |
19 | 11, 18 | ltned 11346 | . . . . . . 7 ⊢ (𝜑 → 0 ≠ 𝑃) |
20 | 19 | necomd 2996 | . . . . . 6 ⊢ (𝜑 → 𝑃 ≠ 0) |
21 | 8 | nn0zd 12580 | . . . . . 6 ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℤ) |
22 | 10, 20, 21 | expne0d 14113 | . . . . 5 ⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ≠ 0) |
23 | 2 | nnzd 12581 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
24 | dvdsval2 16196 | . . . . 5 ⊢ (((𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑁)) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ)) | |
25 | 9, 22, 23, 24 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ)) |
26 | 4, 25 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ) |
27 | 26, 9 | gcdcomd 16451 | . 2 ⊢ (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = ((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))))) |
28 | pcndvds2 16797 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) | |
29 | 1, 2, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) |
30 | coprm 16644 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ) → (¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)) | |
31 | 1, 26, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)) |
32 | 29, 31 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1) |
33 | aks4d1p8d3.3 | . . . . 5 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
34 | pcelnn 16799 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃 ∥ 𝑁)) | |
35 | 1, 2, 34 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃 ∥ 𝑁)) |
36 | 33, 35 | mpbird 256 | . . . 4 ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ) |
37 | rpexp 16655 | . . . 4 ⊢ ((𝑃 ∈ ℤ ∧ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ ∧ (𝑃 pCnt 𝑁) ∈ ℕ) → (((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1 ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)) | |
38 | 7, 26, 36, 37 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1 ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)) |
39 | 32, 38 | mpbird 256 | . 2 ⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1) |
40 | 27, 39 | eqtrd 2772 | 1 ⊢ (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 class class class wbr 5147 (class class class)co 7405 0cc0 11106 1c1 11107 < clt 11244 / cdiv 11867 ℕcn 12208 ℤcz 12554 ↑cexp 14023 ∥ cdvds 16193 gcd cgcd 16431 ℙcprime 16604 pCnt cpc 16765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-fz 13481 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-dvds 16194 df-gcd 16432 df-prm 16605 df-pc 16766 |
This theorem is referenced by: aks4d1p8 40940 |
Copyright terms: Public domain | W3C validator |