| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks4d1p8d3 | Structured version Visualization version GIF version | ||
| Description: The remainder of a division with its maximal prime power is coprime with that prime power. (Contributed by metakunt, 13-Nov-2024.) |
| Ref | Expression |
|---|---|
| aks4d1p8d3.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| aks4d1p8d3.2 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| aks4d1p8d3.3 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| Ref | Expression |
|---|---|
| aks4d1p8d3 | ⊢ (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aks4d1p8d3.2 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 2 | aks4d1p8d3.1 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 3 | pcdvds 16884 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) |
| 5 | prmnn 16693 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 6 | 1, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 7 | 6 | nnzd 12615 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 8 | 1, 2 | pccld 16870 | . . . . . 6 ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0) |
| 9 | 7, 8 | zexpcld 14105 | . . . . 5 ⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ) |
| 10 | 7 | zcnd 12698 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 11 | 0red 11238 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 12 | 1red 11236 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 13 | 7 | zred 12697 | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 14 | 0lt1 11759 | . . . . . . . . . 10 ⊢ 0 < 1 | |
| 15 | 14 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 0 < 1) |
| 16 | prmgt1 16716 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
| 17 | 1, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 1 < 𝑃) |
| 18 | 11, 12, 13, 15, 17 | lttrd 11396 | . . . . . . . 8 ⊢ (𝜑 → 0 < 𝑃) |
| 19 | 11, 18 | ltned 11371 | . . . . . . 7 ⊢ (𝜑 → 0 ≠ 𝑃) |
| 20 | 19 | necomd 2987 | . . . . . 6 ⊢ (𝜑 → 𝑃 ≠ 0) |
| 21 | 8 | nn0zd 12614 | . . . . . 6 ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℤ) |
| 22 | 10, 20, 21 | expne0d 14170 | . . . . 5 ⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ≠ 0) |
| 23 | 2 | nnzd 12615 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 24 | dvdsval2 16275 | . . . . 5 ⊢ (((𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑁)) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ)) | |
| 25 | 9, 22, 23, 24 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ)) |
| 26 | 4, 25 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ) |
| 27 | 26, 9 | gcdcomd 16533 | . 2 ⊢ (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = ((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))))) |
| 28 | pcndvds2 16888 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) | |
| 29 | 1, 2, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) |
| 30 | coprm 16730 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ) → (¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)) | |
| 31 | 1, 26, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)) |
| 32 | 29, 31 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1) |
| 33 | aks4d1p8d3.3 | . . . . 5 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
| 34 | pcelnn 16890 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃 ∥ 𝑁)) | |
| 35 | 1, 2, 34 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃 ∥ 𝑁)) |
| 36 | 33, 35 | mpbird 257 | . . . 4 ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ) |
| 37 | rpexp 16741 | . . . 4 ⊢ ((𝑃 ∈ ℤ ∧ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ ∧ (𝑃 pCnt 𝑁) ∈ ℕ) → (((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1 ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)) | |
| 38 | 7, 26, 36, 37 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1 ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)) |
| 39 | 32, 38 | mpbird 257 | . 2 ⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1) |
| 40 | 27, 39 | eqtrd 2770 | 1 ⊢ (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 (class class class)co 7405 0cc0 11129 1c1 11130 < clt 11269 / cdiv 11894 ℕcn 12240 ℤcz 12588 ↑cexp 14079 ∥ cdvds 16272 gcd cgcd 16513 ℙcprime 16690 pCnt cpc 16856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-fz 13525 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-dvds 16273 df-gcd 16514 df-prm 16691 df-pc 16857 |
| This theorem is referenced by: aks4d1p8 42100 |
| Copyright terms: Public domain | W3C validator |