| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks4d1p8d3 | Structured version Visualization version GIF version | ||
| Description: The remainder of a division with its maximal prime power is coprime with that prime power. (Contributed by metakunt, 13-Nov-2024.) |
| Ref | Expression |
|---|---|
| aks4d1p8d3.1 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| aks4d1p8d3.2 | ⊢ (𝜑 → 𝑃 ∈ ℙ) |
| aks4d1p8d3.3 | ⊢ (𝜑 → 𝑃 ∥ 𝑁) |
| Ref | Expression |
|---|---|
| aks4d1p8d3 | ⊢ (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aks4d1p8d3.2 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℙ) | |
| 2 | aks4d1p8d3.1 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 3 | pcdvds 16811 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁) |
| 5 | prmnn 16620 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 6 | 1, 5 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 7 | 6 | nnzd 12532 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 8 | 1, 2 | pccld 16797 | . . . . . 6 ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0) |
| 9 | 7, 8 | zexpcld 14028 | . . . . 5 ⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ) |
| 10 | 7 | zcnd 12615 | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 11 | 0red 11153 | . . . . . . . 8 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 12 | 1red 11151 | . . . . . . . . 9 ⊢ (𝜑 → 1 ∈ ℝ) | |
| 13 | 7 | zred 12614 | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 14 | 0lt1 11676 | . . . . . . . . . 10 ⊢ 0 < 1 | |
| 15 | 14 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → 0 < 1) |
| 16 | prmgt1 16643 | . . . . . . . . . 10 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
| 17 | 1, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 1 < 𝑃) |
| 18 | 11, 12, 13, 15, 17 | lttrd 11311 | . . . . . . . 8 ⊢ (𝜑 → 0 < 𝑃) |
| 19 | 11, 18 | ltned 11286 | . . . . . . 7 ⊢ (𝜑 → 0 ≠ 𝑃) |
| 20 | 19 | necomd 2980 | . . . . . 6 ⊢ (𝜑 → 𝑃 ≠ 0) |
| 21 | 8 | nn0zd 12531 | . . . . . 6 ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℤ) |
| 22 | 10, 20, 21 | expne0d 14093 | . . . . 5 ⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ≠ 0) |
| 23 | 2 | nnzd 12532 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 24 | dvdsval2 16201 | . . . . 5 ⊢ (((𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑁)) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ)) | |
| 25 | 9, 22, 23, 24 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ)) |
| 26 | 4, 25 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ) |
| 27 | 26, 9 | gcdcomd 16460 | . 2 ⊢ (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = ((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))))) |
| 28 | pcndvds2 16815 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) | |
| 29 | 1, 2, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) |
| 30 | coprm 16657 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ) → (¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)) | |
| 31 | 1, 26, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)) |
| 32 | 29, 31 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1) |
| 33 | aks4d1p8d3.3 | . . . . 5 ⊢ (𝜑 → 𝑃 ∥ 𝑁) | |
| 34 | pcelnn 16817 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃 ∥ 𝑁)) | |
| 35 | 1, 2, 34 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃 ∥ 𝑁)) |
| 36 | 33, 35 | mpbird 257 | . . . 4 ⊢ (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ) |
| 37 | rpexp 16668 | . . . 4 ⊢ ((𝑃 ∈ ℤ ∧ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ ∧ (𝑃 pCnt 𝑁) ∈ ℕ) → (((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1 ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)) | |
| 38 | 7, 26, 36, 37 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1 ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)) |
| 39 | 32, 38 | mpbird 257 | . 2 ⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1) |
| 40 | 27, 39 | eqtrd 2764 | 1 ⊢ (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 (class class class)co 7369 0cc0 11044 1c1 11045 < clt 11184 / cdiv 11811 ℕcn 12162 ℤcz 12505 ↑cexp 14002 ∥ cdvds 16198 gcd cgcd 16440 ℙcprime 16617 pCnt cpc 16783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-fz 13445 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-gcd 16441 df-prm 16618 df-pc 16784 |
| This theorem is referenced by: aks4d1p8 42068 |
| Copyright terms: Public domain | W3C validator |