Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p8d3 Structured version   Visualization version   GIF version

Theorem aks4d1p8d3 40939
Description: The remainder of a division with its maximal prime power is coprime with that prime power. (Contributed by metakunt, 13-Nov-2024.)
Hypotheses
Ref Expression
aks4d1p8d3.1 (𝜑𝑁 ∈ ℕ)
aks4d1p8d3.2 (𝜑𝑃 ∈ ℙ)
aks4d1p8d3.3 (𝜑𝑃𝑁)
Assertion
Ref Expression
aks4d1p8d3 (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1)

Proof of Theorem aks4d1p8d3
StepHypRef Expression
1 aks4d1p8d3.2 . . . . 5 (𝜑𝑃 ∈ ℙ)
2 aks4d1p8d3.1 . . . . 5 (𝜑𝑁 ∈ ℕ)
3 pcdvds 16793 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁)
41, 2, 3syl2anc 584 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁)
5 prmnn 16607 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
61, 5syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℕ)
76nnzd 12581 . . . . . 6 (𝜑𝑃 ∈ ℤ)
81, 2pccld 16779 . . . . . 6 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0)
97, 8zexpcld 14049 . . . . 5 (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ)
107zcnd 12663 . . . . . 6 (𝜑𝑃 ∈ ℂ)
11 0red 11213 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
12 1red 11211 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
137zred 12662 . . . . . . . . 9 (𝜑𝑃 ∈ ℝ)
14 0lt1 11732 . . . . . . . . . 10 0 < 1
1514a1i 11 . . . . . . . . 9 (𝜑 → 0 < 1)
16 prmgt1 16630 . . . . . . . . . 10 (𝑃 ∈ ℙ → 1 < 𝑃)
171, 16syl 17 . . . . . . . . 9 (𝜑 → 1 < 𝑃)
1811, 12, 13, 15, 17lttrd 11371 . . . . . . . 8 (𝜑 → 0 < 𝑃)
1911, 18ltned 11346 . . . . . . 7 (𝜑 → 0 ≠ 𝑃)
2019necomd 2996 . . . . . 6 (𝜑𝑃 ≠ 0)
218nn0zd 12580 . . . . . 6 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℤ)
2210, 20, 21expne0d 14113 . . . . 5 (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ≠ 0)
232nnzd 12581 . . . . 5 (𝜑𝑁 ∈ ℤ)
24 dvdsval2 16196 . . . . 5 (((𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑁)) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ))
259, 22, 23, 24syl3anc 1371 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ))
264, 25mpbid 231 . . 3 (𝜑 → (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ)
2726, 9gcdcomd 16451 . 2 (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = ((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))))
28 pcndvds2 16797 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))))
291, 2, 28syl2anc 584 . . . 4 (𝜑 → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))))
30 coprm 16644 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ) → (¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1))
311, 26, 30syl2anc 584 . . . 4 (𝜑 → (¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1))
3229, 31mpbid 231 . . 3 (𝜑 → (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)
33 aks4d1p8d3.3 . . . . 5 (𝜑𝑃𝑁)
34 pcelnn 16799 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃𝑁))
351, 2, 34syl2anc 584 . . . . 5 (𝜑 → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃𝑁))
3633, 35mpbird 256 . . . 4 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ)
37 rpexp 16655 . . . 4 ((𝑃 ∈ ℤ ∧ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ ∧ (𝑃 pCnt 𝑁) ∈ ℕ) → (((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1 ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1))
387, 26, 36, 37syl3anc 1371 . . 3 (𝜑 → (((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1 ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1))
3932, 38mpbird 256 . 2 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)
4027, 39eqtrd 2772 1 (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1541  wcel 2106  wne 2940   class class class wbr 5147  (class class class)co 7405  0cc0 11106  1c1 11107   < clt 11244   / cdiv 11867  cn 12208  cz 12554  cexp 14023  cdvds 16193   gcd cgcd 16431  cprime 16604   pCnt cpc 16765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-fz 13481  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432  df-prm 16605  df-pc 16766
This theorem is referenced by:  aks4d1p8  40940
  Copyright terms: Public domain W3C validator