Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p8d3 Structured version   Visualization version   GIF version

Theorem aks4d1p8d3 40589
Description: The remainder of a division with its maximal prime power is coprime with that prime power. (Contributed by metakunt, 13-Nov-2024.)
Hypotheses
Ref Expression
aks4d1p8d3.1 (𝜑𝑁 ∈ ℕ)
aks4d1p8d3.2 (𝜑𝑃 ∈ ℙ)
aks4d1p8d3.3 (𝜑𝑃𝑁)
Assertion
Ref Expression
aks4d1p8d3 (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1)

Proof of Theorem aks4d1p8d3
StepHypRef Expression
1 aks4d1p8d3.2 . . . . 5 (𝜑𝑃 ∈ ℙ)
2 aks4d1p8d3.1 . . . . 5 (𝜑𝑁 ∈ ℕ)
3 pcdvds 16741 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁)
41, 2, 3syl2anc 585 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁)
5 prmnn 16555 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
61, 5syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℕ)
76nnzd 12531 . . . . . 6 (𝜑𝑃 ∈ ℤ)
81, 2pccld 16727 . . . . . 6 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0)
97, 8zexpcld 13999 . . . . 5 (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ)
107zcnd 12613 . . . . . 6 (𝜑𝑃 ∈ ℂ)
11 0red 11163 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
12 1red 11161 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
137zred 12612 . . . . . . . . 9 (𝜑𝑃 ∈ ℝ)
14 0lt1 11682 . . . . . . . . . 10 0 < 1
1514a1i 11 . . . . . . . . 9 (𝜑 → 0 < 1)
16 prmgt1 16578 . . . . . . . . . 10 (𝑃 ∈ ℙ → 1 < 𝑃)
171, 16syl 17 . . . . . . . . 9 (𝜑 → 1 < 𝑃)
1811, 12, 13, 15, 17lttrd 11321 . . . . . . . 8 (𝜑 → 0 < 𝑃)
1911, 18ltned 11296 . . . . . . 7 (𝜑 → 0 ≠ 𝑃)
2019necomd 2996 . . . . . 6 (𝜑𝑃 ≠ 0)
218nn0zd 12530 . . . . . 6 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℤ)
2210, 20, 21expne0d 14063 . . . . 5 (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ≠ 0)
232nnzd 12531 . . . . 5 (𝜑𝑁 ∈ ℤ)
24 dvdsval2 16144 . . . . 5 (((𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑁)) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ))
259, 22, 23, 24syl3anc 1372 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ))
264, 25mpbid 231 . . 3 (𝜑 → (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ)
2726, 9gcdcomd 16399 . 2 (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = ((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))))
28 pcndvds2 16745 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))))
291, 2, 28syl2anc 585 . . . 4 (𝜑 → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))))
30 coprm 16592 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ) → (¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1))
311, 26, 30syl2anc 585 . . . 4 (𝜑 → (¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1))
3229, 31mpbid 231 . . 3 (𝜑 → (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)
33 aks4d1p8d3.3 . . . . 5 (𝜑𝑃𝑁)
34 pcelnn 16747 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃𝑁))
351, 2, 34syl2anc 585 . . . . 5 (𝜑 → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃𝑁))
3633, 35mpbird 257 . . . 4 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ)
37 rpexp 16603 . . . 4 ((𝑃 ∈ ℤ ∧ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ ∧ (𝑃 pCnt 𝑁) ∈ ℕ) → (((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1 ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1))
387, 26, 36, 37syl3anc 1372 . . 3 (𝜑 → (((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1 ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1))
3932, 38mpbird 257 . 2 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)
4027, 39eqtrd 2773 1 (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1542  wcel 2107  wne 2940   class class class wbr 5106  (class class class)co 7358  0cc0 11056  1c1 11057   < clt 11194   / cdiv 11817  cn 12158  cz 12504  cexp 13973  cdvds 16141   gcd cgcd 16379  cprime 16552   pCnt cpc 16713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-2o 8414  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-sup 9383  df-inf 9384  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-3 12222  df-n0 12419  df-z 12505  df-uz 12769  df-q 12879  df-rp 12921  df-fz 13431  df-fl 13703  df-mod 13781  df-seq 13913  df-exp 13974  df-cj 14990  df-re 14991  df-im 14992  df-sqrt 15126  df-abs 15127  df-dvds 16142  df-gcd 16380  df-prm 16553  df-pc 16714
This theorem is referenced by:  aks4d1p8  40590
  Copyright terms: Public domain W3C validator