Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks4d1p8d3 Structured version   Visualization version   GIF version

Theorem aks4d1p8d3 41612
Description: The remainder of a division with its maximal prime power is coprime with that prime power. (Contributed by metakunt, 13-Nov-2024.)
Hypotheses
Ref Expression
aks4d1p8d3.1 (𝜑𝑁 ∈ ℕ)
aks4d1p8d3.2 (𝜑𝑃 ∈ ℙ)
aks4d1p8d3.3 (𝜑𝑃𝑁)
Assertion
Ref Expression
aks4d1p8d3 (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1)

Proof of Theorem aks4d1p8d3
StepHypRef Expression
1 aks4d1p8d3.2 . . . . 5 (𝜑𝑃 ∈ ℙ)
2 aks4d1p8d3.1 . . . . 5 (𝜑𝑁 ∈ ℕ)
3 pcdvds 16830 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁)
41, 2, 3syl2anc 582 . . . 4 (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁)
5 prmnn 16642 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
61, 5syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℕ)
76nnzd 12613 . . . . . 6 (𝜑𝑃 ∈ ℤ)
81, 2pccld 16816 . . . . . 6 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ0)
97, 8zexpcld 14082 . . . . 5 (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ)
107zcnd 12695 . . . . . 6 (𝜑𝑃 ∈ ℂ)
11 0red 11245 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
12 1red 11243 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
137zred 12694 . . . . . . . . 9 (𝜑𝑃 ∈ ℝ)
14 0lt1 11764 . . . . . . . . . 10 0 < 1
1514a1i 11 . . . . . . . . 9 (𝜑 → 0 < 1)
16 prmgt1 16665 . . . . . . . . . 10 (𝑃 ∈ ℙ → 1 < 𝑃)
171, 16syl 17 . . . . . . . . 9 (𝜑 → 1 < 𝑃)
1811, 12, 13, 15, 17lttrd 11403 . . . . . . . 8 (𝜑 → 0 < 𝑃)
1911, 18ltned 11378 . . . . . . 7 (𝜑 → 0 ≠ 𝑃)
2019necomd 2986 . . . . . 6 (𝜑𝑃 ≠ 0)
218nn0zd 12612 . . . . . 6 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℤ)
2210, 20, 21expne0d 14146 . . . . 5 (𝜑 → (𝑃↑(𝑃 pCnt 𝑁)) ≠ 0)
232nnzd 12613 . . . . 5 (𝜑𝑁 ∈ ℤ)
24 dvdsval2 16231 . . . . 5 (((𝑃↑(𝑃 pCnt 𝑁)) ∈ ℤ ∧ (𝑃↑(𝑃 pCnt 𝑁)) ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ))
259, 22, 23, 24syl3anc 1368 . . . 4 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑁)) ∥ 𝑁 ↔ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ))
264, 25mpbid 231 . . 3 (𝜑 → (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ)
2726, 9gcdcomd 16486 . 2 (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = ((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))))
28 pcndvds2 16834 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))))
291, 2, 28syl2anc 582 . . . 4 (𝜑 → ¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))))
30 coprm 16679 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ) → (¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1))
311, 26, 30syl2anc 582 . . . 4 (𝜑 → (¬ 𝑃 ∥ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1))
3229, 31mpbid 231 . . 3 (𝜑 → (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)
33 aks4d1p8d3.3 . . . . 5 (𝜑𝑃𝑁)
34 pcelnn 16836 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃𝑁))
351, 2, 34syl2anc 582 . . . . 5 (𝜑 → ((𝑃 pCnt 𝑁) ∈ ℕ ↔ 𝑃𝑁))
3633, 35mpbird 256 . . . 4 (𝜑 → (𝑃 pCnt 𝑁) ∈ ℕ)
37 rpexp 16691 . . . 4 ((𝑃 ∈ ℤ ∧ (𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) ∈ ℤ ∧ (𝑃 pCnt 𝑁) ∈ ℕ) → (((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1 ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1))
387, 26, 36, 37syl3anc 1368 . . 3 (𝜑 → (((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1 ↔ (𝑃 gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1))
3932, 38mpbird 256 . 2 (𝜑 → ((𝑃↑(𝑃 pCnt 𝑁)) gcd (𝑁 / (𝑃↑(𝑃 pCnt 𝑁)))) = 1)
4027, 39eqtrd 2765 1 (𝜑 → ((𝑁 / (𝑃↑(𝑃 pCnt 𝑁))) gcd (𝑃↑(𝑃 pCnt 𝑁))) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1533  wcel 2098  wne 2930   class class class wbr 5143  (class class class)co 7415  0cc0 11136  1c1 11137   < clt 11276   / cdiv 11899  cn 12240  cz 12586  cexp 14056  cdvds 16228   gcd cgcd 16466  cprime 16639   pCnt cpc 16802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-2o 8484  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-sup 9463  df-inf 9464  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-3 12304  df-n0 12501  df-z 12587  df-uz 12851  df-q 12961  df-rp 13005  df-fz 13515  df-fl 13787  df-mod 13865  df-seq 13997  df-exp 14057  df-cj 15076  df-re 15077  df-im 15078  df-sqrt 15212  df-abs 15213  df-dvds 16229  df-gcd 16467  df-prm 16640  df-pc 16803
This theorem is referenced by:  aks4d1p8  41613
  Copyright terms: Public domain W3C validator