MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eulerthlem1 Structured version   Visualization version   GIF version

Theorem eulerthlem1 16107
Description: Lemma for eulerth 16109. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
eulerth.1 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
eulerth.2 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
eulerth.3 𝑇 = (1...(ϕ‘𝑁))
eulerth.4 (𝜑𝐹:𝑇1-1-onto𝑆)
eulerth.5 𝐺 = (𝑥𝑇 ↦ ((𝐴 · (𝐹𝑥)) mod 𝑁))
Assertion
Ref Expression
eulerthlem1 (𝜑𝐺:𝑇𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆   𝜑,𝑥,𝑦   𝑥,𝑇,𝑦
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem eulerthlem1
StepHypRef Expression
1 eulerth.1 . . . . . . 7 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
21simp2d 1140 . . . . . 6 (𝜑𝐴 ∈ ℤ)
32adantr 484 . . . . 5 ((𝜑𝑥𝑇) → 𝐴 ∈ ℤ)
4 eulerth.4 . . . . . . . . . 10 (𝜑𝐹:𝑇1-1-onto𝑆)
5 f1of 6597 . . . . . . . . . 10 (𝐹:𝑇1-1-onto𝑆𝐹:𝑇𝑆)
64, 5syl 17 . . . . . . . . 9 (𝜑𝐹:𝑇𝑆)
76ffvelrnda 6833 . . . . . . . 8 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ 𝑆)
8 oveq1 7147 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) → (𝑦 gcd 𝑁) = ((𝐹𝑥) gcd 𝑁))
98eqeq1d 2824 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹𝑥) gcd 𝑁) = 1))
10 eulerth.2 . . . . . . . . 9 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
119, 10elrab2 3658 . . . . . . . 8 ((𝐹𝑥) ∈ 𝑆 ↔ ((𝐹𝑥) ∈ (0..^𝑁) ∧ ((𝐹𝑥) gcd 𝑁) = 1))
127, 11sylib 221 . . . . . . 7 ((𝜑𝑥𝑇) → ((𝐹𝑥) ∈ (0..^𝑁) ∧ ((𝐹𝑥) gcd 𝑁) = 1))
1312simpld 498 . . . . . 6 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ (0..^𝑁))
14 elfzoelz 13033 . . . . . 6 ((𝐹𝑥) ∈ (0..^𝑁) → (𝐹𝑥) ∈ ℤ)
1513, 14syl 17 . . . . 5 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ ℤ)
163, 15zmulcld 12081 . . . 4 ((𝜑𝑥𝑇) → (𝐴 · (𝐹𝑥)) ∈ ℤ)
171simp1d 1139 . . . . 5 (𝜑𝑁 ∈ ℕ)
1817adantr 484 . . . 4 ((𝜑𝑥𝑇) → 𝑁 ∈ ℕ)
19 zmodfzo 13257 . . . 4 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁))
2016, 18, 19syl2anc 587 . . 3 ((𝜑𝑥𝑇) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁))
21 modgcd 15869 . . . . 5 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
2216, 18, 21syl2anc 587 . . . 4 ((𝜑𝑥𝑇) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
2317nnzd 12074 . . . . . 6 (𝜑𝑁 ∈ ℤ)
2423adantr 484 . . . . 5 ((𝜑𝑥𝑇) → 𝑁 ∈ ℤ)
25 gcdcom 15851 . . . . 5 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 · (𝐹𝑥)) gcd 𝑁) = (𝑁 gcd (𝐴 · (𝐹𝑥))))
2616, 24, 25syl2anc 587 . . . 4 ((𝜑𝑥𝑇) → ((𝐴 · (𝐹𝑥)) gcd 𝑁) = (𝑁 gcd (𝐴 · (𝐹𝑥))))
27 gcdcom 15851 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑁 gcd 𝐴) = (𝐴 gcd 𝑁))
2823, 2, 27syl2anc 587 . . . . . . 7 (𝜑 → (𝑁 gcd 𝐴) = (𝐴 gcd 𝑁))
291simp3d 1141 . . . . . . 7 (𝜑 → (𝐴 gcd 𝑁) = 1)
3028, 29eqtrd 2857 . . . . . 6 (𝜑 → (𝑁 gcd 𝐴) = 1)
3130adantr 484 . . . . 5 ((𝜑𝑥𝑇) → (𝑁 gcd 𝐴) = 1)
32 gcdcom 15851 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝐹𝑥) ∈ ℤ) → (𝑁 gcd (𝐹𝑥)) = ((𝐹𝑥) gcd 𝑁))
3324, 15, 32syl2anc 587 . . . . . 6 ((𝜑𝑥𝑇) → (𝑁 gcd (𝐹𝑥)) = ((𝐹𝑥) gcd 𝑁))
3412simprd 499 . . . . . 6 ((𝜑𝑥𝑇) → ((𝐹𝑥) gcd 𝑁) = 1)
3533, 34eqtrd 2857 . . . . 5 ((𝜑𝑥𝑇) → (𝑁 gcd (𝐹𝑥)) = 1)
36 rpmul 15992 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐹𝑥) ∈ ℤ) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1))
3724, 3, 15, 36syl3anc 1368 . . . . 5 ((𝜑𝑥𝑇) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1))
3831, 35, 37mp2and 698 . . . 4 ((𝜑𝑥𝑇) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1)
3922, 26, 383eqtrd 2861 . . 3 ((𝜑𝑥𝑇) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1)
40 oveq1 7147 . . . . 5 (𝑦 = ((𝐴 · (𝐹𝑥)) mod 𝑁) → (𝑦 gcd 𝑁) = (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁))
4140eqeq1d 2824 . . . 4 (𝑦 = ((𝐴 · (𝐹𝑥)) mod 𝑁) → ((𝑦 gcd 𝑁) = 1 ↔ (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1))
4241, 10elrab2 3658 . . 3 (((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆 ↔ (((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁) ∧ (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1))
4320, 39, 42sylanbrc 586 . 2 ((𝜑𝑥𝑇) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆)
44 eulerth.5 . 2 𝐺 = (𝑥𝑇 ↦ ((𝐴 · (𝐹𝑥)) mod 𝑁))
4543, 44fmptd 6860 1 (𝜑𝐺:𝑇𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2114  {crab 3134  cmpt 5122  wf 6330  1-1-ontowf1o 6333  cfv 6334  (class class class)co 7140  0cc0 10526  1c1 10527   · cmul 10531  cn 11625  cz 11969  ...cfz 12885  ..^cfzo 13028   mod cmo 13232   gcd cgcd 15832  ϕcphi 16090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-dvds 15599  df-gcd 15833
This theorem is referenced by:  eulerthlem2  16108
  Copyright terms: Public domain W3C validator