MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eulerthlem1 Structured version   Visualization version   GIF version

Theorem eulerthlem1 16753
Description: Lemma for eulerth 16755. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
eulerth.1 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
eulerth.2 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
eulerth.3 𝑇 = (1...(ϕ‘𝑁))
eulerth.4 (𝜑𝐹:𝑇1-1-onto𝑆)
eulerth.5 𝐺 = (𝑥𝑇 ↦ ((𝐴 · (𝐹𝑥)) mod 𝑁))
Assertion
Ref Expression
eulerthlem1 (𝜑𝐺:𝑇𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆   𝜑,𝑥,𝑦   𝑥,𝑇,𝑦
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem eulerthlem1
StepHypRef Expression
1 eulerth.1 . . . . . . 7 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
21simp2d 1140 . . . . . 6 (𝜑𝐴 ∈ ℤ)
32adantr 479 . . . . 5 ((𝜑𝑥𝑇) → 𝐴 ∈ ℤ)
4 eulerth.4 . . . . . . . . . 10 (𝜑𝐹:𝑇1-1-onto𝑆)
5 f1of 6838 . . . . . . . . . 10 (𝐹:𝑇1-1-onto𝑆𝐹:𝑇𝑆)
64, 5syl 17 . . . . . . . . 9 (𝜑𝐹:𝑇𝑆)
76ffvelcdmda 7093 . . . . . . . 8 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ 𝑆)
8 oveq1 7426 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) → (𝑦 gcd 𝑁) = ((𝐹𝑥) gcd 𝑁))
98eqeq1d 2727 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹𝑥) gcd 𝑁) = 1))
10 eulerth.2 . . . . . . . . 9 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
119, 10elrab2 3682 . . . . . . . 8 ((𝐹𝑥) ∈ 𝑆 ↔ ((𝐹𝑥) ∈ (0..^𝑁) ∧ ((𝐹𝑥) gcd 𝑁) = 1))
127, 11sylib 217 . . . . . . 7 ((𝜑𝑥𝑇) → ((𝐹𝑥) ∈ (0..^𝑁) ∧ ((𝐹𝑥) gcd 𝑁) = 1))
1312simpld 493 . . . . . 6 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ (0..^𝑁))
14 elfzoelz 13667 . . . . . 6 ((𝐹𝑥) ∈ (0..^𝑁) → (𝐹𝑥) ∈ ℤ)
1513, 14syl 17 . . . . 5 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ ℤ)
163, 15zmulcld 12705 . . . 4 ((𝜑𝑥𝑇) → (𝐴 · (𝐹𝑥)) ∈ ℤ)
171simp1d 1139 . . . . 5 (𝜑𝑁 ∈ ℕ)
1817adantr 479 . . . 4 ((𝜑𝑥𝑇) → 𝑁 ∈ ℕ)
19 zmodfzo 13895 . . . 4 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁))
2016, 18, 19syl2anc 582 . . 3 ((𝜑𝑥𝑇) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁))
21 modgcd 16511 . . . . 5 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
2216, 18, 21syl2anc 582 . . . 4 ((𝜑𝑥𝑇) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
2317nnzd 12618 . . . . . 6 (𝜑𝑁 ∈ ℤ)
2423adantr 479 . . . . 5 ((𝜑𝑥𝑇) → 𝑁 ∈ ℤ)
2516, 24gcdcomd 16492 . . . 4 ((𝜑𝑥𝑇) → ((𝐴 · (𝐹𝑥)) gcd 𝑁) = (𝑁 gcd (𝐴 · (𝐹𝑥))))
2623, 2gcdcomd 16492 . . . . . . 7 (𝜑 → (𝑁 gcd 𝐴) = (𝐴 gcd 𝑁))
271simp3d 1141 . . . . . . 7 (𝜑 → (𝐴 gcd 𝑁) = 1)
2826, 27eqtrd 2765 . . . . . 6 (𝜑 → (𝑁 gcd 𝐴) = 1)
2928adantr 479 . . . . 5 ((𝜑𝑥𝑇) → (𝑁 gcd 𝐴) = 1)
3024, 15gcdcomd 16492 . . . . . 6 ((𝜑𝑥𝑇) → (𝑁 gcd (𝐹𝑥)) = ((𝐹𝑥) gcd 𝑁))
3112simprd 494 . . . . . 6 ((𝜑𝑥𝑇) → ((𝐹𝑥) gcd 𝑁) = 1)
3230, 31eqtrd 2765 . . . . 5 ((𝜑𝑥𝑇) → (𝑁 gcd (𝐹𝑥)) = 1)
33 rpmul 16633 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐹𝑥) ∈ ℤ) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1))
3424, 3, 15, 33syl3anc 1368 . . . . 5 ((𝜑𝑥𝑇) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1))
3529, 32, 34mp2and 697 . . . 4 ((𝜑𝑥𝑇) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1)
3622, 25, 353eqtrd 2769 . . 3 ((𝜑𝑥𝑇) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1)
37 oveq1 7426 . . . . 5 (𝑦 = ((𝐴 · (𝐹𝑥)) mod 𝑁) → (𝑦 gcd 𝑁) = (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁))
3837eqeq1d 2727 . . . 4 (𝑦 = ((𝐴 · (𝐹𝑥)) mod 𝑁) → ((𝑦 gcd 𝑁) = 1 ↔ (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1))
3938, 10elrab2 3682 . . 3 (((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆 ↔ (((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁) ∧ (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1))
4020, 36, 39sylanbrc 581 . 2 ((𝜑𝑥𝑇) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆)
41 eulerth.5 . 2 𝐺 = (𝑥𝑇 ↦ ((𝐴 · (𝐹𝑥)) mod 𝑁))
4240, 41fmptd 7123 1 (𝜑𝐺:𝑇𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  {crab 3418  cmpt 5232  wf 6545  1-1-ontowf1o 6548  cfv 6549  (class class class)co 7419  0cc0 11140  1c1 11141   · cmul 11145  cn 12245  cz 12591  ...cfz 13519  ..^cfzo 13662   mod cmo 13870   gcd cgcd 16472  ϕcphi 16736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-dvds 16235  df-gcd 16473
This theorem is referenced by:  eulerthlem2  16754
  Copyright terms: Public domain W3C validator