MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eulerthlem1 Structured version   Visualization version   GIF version

Theorem eulerthlem1 16684
Description: Lemma for eulerth 16686. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
eulerth.1 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
eulerth.2 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
eulerth.3 𝑇 = (1...(ϕ‘𝑁))
eulerth.4 (𝜑𝐹:𝑇1-1-onto𝑆)
eulerth.5 𝐺 = (𝑥𝑇 ↦ ((𝐴 · (𝐹𝑥)) mod 𝑁))
Assertion
Ref Expression
eulerthlem1 (𝜑𝐺:𝑇𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆   𝜑,𝑥,𝑦   𝑥,𝑇,𝑦
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem eulerthlem1
StepHypRef Expression
1 eulerth.1 . . . . . . 7 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
21simp2d 1143 . . . . . 6 (𝜑𝐴 ∈ ℤ)
32adantr 480 . . . . 5 ((𝜑𝑥𝑇) → 𝐴 ∈ ℤ)
4 eulerth.4 . . . . . . . . . 10 (𝜑𝐹:𝑇1-1-onto𝑆)
5 f1of 6759 . . . . . . . . . 10 (𝐹:𝑇1-1-onto𝑆𝐹:𝑇𝑆)
64, 5syl 17 . . . . . . . . 9 (𝜑𝐹:𝑇𝑆)
76ffvelcdmda 7012 . . . . . . . 8 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ 𝑆)
8 oveq1 7348 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) → (𝑦 gcd 𝑁) = ((𝐹𝑥) gcd 𝑁))
98eqeq1d 2732 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹𝑥) gcd 𝑁) = 1))
10 eulerth.2 . . . . . . . . 9 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
119, 10elrab2 3648 . . . . . . . 8 ((𝐹𝑥) ∈ 𝑆 ↔ ((𝐹𝑥) ∈ (0..^𝑁) ∧ ((𝐹𝑥) gcd 𝑁) = 1))
127, 11sylib 218 . . . . . . 7 ((𝜑𝑥𝑇) → ((𝐹𝑥) ∈ (0..^𝑁) ∧ ((𝐹𝑥) gcd 𝑁) = 1))
1312simpld 494 . . . . . 6 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ (0..^𝑁))
14 elfzoelz 13551 . . . . . 6 ((𝐹𝑥) ∈ (0..^𝑁) → (𝐹𝑥) ∈ ℤ)
1513, 14syl 17 . . . . 5 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ ℤ)
163, 15zmulcld 12575 . . . 4 ((𝜑𝑥𝑇) → (𝐴 · (𝐹𝑥)) ∈ ℤ)
171simp1d 1142 . . . . 5 (𝜑𝑁 ∈ ℕ)
1817adantr 480 . . . 4 ((𝜑𝑥𝑇) → 𝑁 ∈ ℕ)
19 zmodfzo 13790 . . . 4 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁))
2016, 18, 19syl2anc 584 . . 3 ((𝜑𝑥𝑇) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁))
21 modgcd 16435 . . . . 5 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
2216, 18, 21syl2anc 584 . . . 4 ((𝜑𝑥𝑇) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
2317nnzd 12487 . . . . . 6 (𝜑𝑁 ∈ ℤ)
2423adantr 480 . . . . 5 ((𝜑𝑥𝑇) → 𝑁 ∈ ℤ)
2516, 24gcdcomd 16417 . . . 4 ((𝜑𝑥𝑇) → ((𝐴 · (𝐹𝑥)) gcd 𝑁) = (𝑁 gcd (𝐴 · (𝐹𝑥))))
2623, 2gcdcomd 16417 . . . . . . 7 (𝜑 → (𝑁 gcd 𝐴) = (𝐴 gcd 𝑁))
271simp3d 1144 . . . . . . 7 (𝜑 → (𝐴 gcd 𝑁) = 1)
2826, 27eqtrd 2765 . . . . . 6 (𝜑 → (𝑁 gcd 𝐴) = 1)
2928adantr 480 . . . . 5 ((𝜑𝑥𝑇) → (𝑁 gcd 𝐴) = 1)
3024, 15gcdcomd 16417 . . . . . 6 ((𝜑𝑥𝑇) → (𝑁 gcd (𝐹𝑥)) = ((𝐹𝑥) gcd 𝑁))
3112simprd 495 . . . . . 6 ((𝜑𝑥𝑇) → ((𝐹𝑥) gcd 𝑁) = 1)
3230, 31eqtrd 2765 . . . . 5 ((𝜑𝑥𝑇) → (𝑁 gcd (𝐹𝑥)) = 1)
33 rpmul 16562 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐹𝑥) ∈ ℤ) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1))
3424, 3, 15, 33syl3anc 1373 . . . . 5 ((𝜑𝑥𝑇) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1))
3529, 32, 34mp2and 699 . . . 4 ((𝜑𝑥𝑇) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1)
3622, 25, 353eqtrd 2769 . . 3 ((𝜑𝑥𝑇) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1)
37 oveq1 7348 . . . . 5 (𝑦 = ((𝐴 · (𝐹𝑥)) mod 𝑁) → (𝑦 gcd 𝑁) = (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁))
3837eqeq1d 2732 . . . 4 (𝑦 = ((𝐴 · (𝐹𝑥)) mod 𝑁) → ((𝑦 gcd 𝑁) = 1 ↔ (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1))
3938, 10elrab2 3648 . . 3 (((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆 ↔ (((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁) ∧ (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1))
4020, 36, 39sylanbrc 583 . 2 ((𝜑𝑥𝑇) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆)
41 eulerth.5 . 2 𝐺 = (𝑥𝑇 ↦ ((𝐴 · (𝐹𝑥)) mod 𝑁))
4240, 41fmptd 7042 1 (𝜑𝐺:𝑇𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110  {crab 3393  cmpt 5170  wf 6473  1-1-ontowf1o 6476  cfv 6477  (class class class)co 7341  0cc0 10998  1c1 10999   · cmul 11003  cn 12117  cz 12460  ...cfz 13399  ..^cfzo 13546   mod cmo 13765   gcd cgcd 16397  ϕcphi 16667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-z 12461  df-uz 12725  df-rp 12883  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-dvds 16156  df-gcd 16398
This theorem is referenced by:  eulerthlem2  16685
  Copyright terms: Public domain W3C validator