MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eulerthlem1 Structured version   Visualization version   GIF version

Theorem eulerthlem1 16112
Description: Lemma for eulerth 16114. (Contributed by Mario Carneiro, 8-May-2015.)
Hypotheses
Ref Expression
eulerth.1 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
eulerth.2 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
eulerth.3 𝑇 = (1...(ϕ‘𝑁))
eulerth.4 (𝜑𝐹:𝑇1-1-onto𝑆)
eulerth.5 𝐺 = (𝑥𝑇 ↦ ((𝐴 · (𝐹𝑥)) mod 𝑁))
Assertion
Ref Expression
eulerthlem1 (𝜑𝐺:𝑇𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆   𝜑,𝑥,𝑦   𝑥,𝑇,𝑦
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem eulerthlem1
StepHypRef Expression
1 eulerth.1 . . . . . . 7 (𝜑 → (𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
21simp2d 1139 . . . . . 6 (𝜑𝐴 ∈ ℤ)
32adantr 483 . . . . 5 ((𝜑𝑥𝑇) → 𝐴 ∈ ℤ)
4 eulerth.4 . . . . . . . . . 10 (𝜑𝐹:𝑇1-1-onto𝑆)
5 f1of 6610 . . . . . . . . . 10 (𝐹:𝑇1-1-onto𝑆𝐹:𝑇𝑆)
64, 5syl 17 . . . . . . . . 9 (𝜑𝐹:𝑇𝑆)
76ffvelrnda 6846 . . . . . . . 8 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ 𝑆)
8 oveq1 7157 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) → (𝑦 gcd 𝑁) = ((𝐹𝑥) gcd 𝑁))
98eqeq1d 2823 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → ((𝑦 gcd 𝑁) = 1 ↔ ((𝐹𝑥) gcd 𝑁) = 1))
10 eulerth.2 . . . . . . . . 9 𝑆 = {𝑦 ∈ (0..^𝑁) ∣ (𝑦 gcd 𝑁) = 1}
119, 10elrab2 3683 . . . . . . . 8 ((𝐹𝑥) ∈ 𝑆 ↔ ((𝐹𝑥) ∈ (0..^𝑁) ∧ ((𝐹𝑥) gcd 𝑁) = 1))
127, 11sylib 220 . . . . . . 7 ((𝜑𝑥𝑇) → ((𝐹𝑥) ∈ (0..^𝑁) ∧ ((𝐹𝑥) gcd 𝑁) = 1))
1312simpld 497 . . . . . 6 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ (0..^𝑁))
14 elfzoelz 13032 . . . . . 6 ((𝐹𝑥) ∈ (0..^𝑁) → (𝐹𝑥) ∈ ℤ)
1513, 14syl 17 . . . . 5 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ ℤ)
163, 15zmulcld 12087 . . . 4 ((𝜑𝑥𝑇) → (𝐴 · (𝐹𝑥)) ∈ ℤ)
171simp1d 1138 . . . . 5 (𝜑𝑁 ∈ ℕ)
1817adantr 483 . . . 4 ((𝜑𝑥𝑇) → 𝑁 ∈ ℕ)
19 zmodfzo 13256 . . . 4 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁))
2016, 18, 19syl2anc 586 . . 3 ((𝜑𝑥𝑇) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁))
21 modgcd 15874 . . . . 5 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
2216, 18, 21syl2anc 586 . . . 4 ((𝜑𝑥𝑇) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = ((𝐴 · (𝐹𝑥)) gcd 𝑁))
2317nnzd 12080 . . . . . 6 (𝜑𝑁 ∈ ℤ)
2423adantr 483 . . . . 5 ((𝜑𝑥𝑇) → 𝑁 ∈ ℤ)
25 gcdcom 15856 . . . . 5 (((𝐴 · (𝐹𝑥)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 · (𝐹𝑥)) gcd 𝑁) = (𝑁 gcd (𝐴 · (𝐹𝑥))))
2616, 24, 25syl2anc 586 . . . 4 ((𝜑𝑥𝑇) → ((𝐴 · (𝐹𝑥)) gcd 𝑁) = (𝑁 gcd (𝐴 · (𝐹𝑥))))
27 gcdcom 15856 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑁 gcd 𝐴) = (𝐴 gcd 𝑁))
2823, 2, 27syl2anc 586 . . . . . . 7 (𝜑 → (𝑁 gcd 𝐴) = (𝐴 gcd 𝑁))
291simp3d 1140 . . . . . . 7 (𝜑 → (𝐴 gcd 𝑁) = 1)
3028, 29eqtrd 2856 . . . . . 6 (𝜑 → (𝑁 gcd 𝐴) = 1)
3130adantr 483 . . . . 5 ((𝜑𝑥𝑇) → (𝑁 gcd 𝐴) = 1)
32 gcdcom 15856 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝐹𝑥) ∈ ℤ) → (𝑁 gcd (𝐹𝑥)) = ((𝐹𝑥) gcd 𝑁))
3324, 15, 32syl2anc 586 . . . . . 6 ((𝜑𝑥𝑇) → (𝑁 gcd (𝐹𝑥)) = ((𝐹𝑥) gcd 𝑁))
3412simprd 498 . . . . . 6 ((𝜑𝑥𝑇) → ((𝐹𝑥) gcd 𝑁) = 1)
3533, 34eqtrd 2856 . . . . 5 ((𝜑𝑥𝑇) → (𝑁 gcd (𝐹𝑥)) = 1)
36 rpmul 15997 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐹𝑥) ∈ ℤ) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1))
3724, 3, 15, 36syl3anc 1367 . . . . 5 ((𝜑𝑥𝑇) → (((𝑁 gcd 𝐴) = 1 ∧ (𝑁 gcd (𝐹𝑥)) = 1) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1))
3831, 35, 37mp2and 697 . . . 4 ((𝜑𝑥𝑇) → (𝑁 gcd (𝐴 · (𝐹𝑥))) = 1)
3922, 26, 383eqtrd 2860 . . 3 ((𝜑𝑥𝑇) → (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1)
40 oveq1 7157 . . . . 5 (𝑦 = ((𝐴 · (𝐹𝑥)) mod 𝑁) → (𝑦 gcd 𝑁) = (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁))
4140eqeq1d 2823 . . . 4 (𝑦 = ((𝐴 · (𝐹𝑥)) mod 𝑁) → ((𝑦 gcd 𝑁) = 1 ↔ (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1))
4241, 10elrab2 3683 . . 3 (((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆 ↔ (((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ (0..^𝑁) ∧ (((𝐴 · (𝐹𝑥)) mod 𝑁) gcd 𝑁) = 1))
4320, 39, 42sylanbrc 585 . 2 ((𝜑𝑥𝑇) → ((𝐴 · (𝐹𝑥)) mod 𝑁) ∈ 𝑆)
44 eulerth.5 . 2 𝐺 = (𝑥𝑇 ↦ ((𝐴 · (𝐹𝑥)) mod 𝑁))
4543, 44fmptd 6873 1 (𝜑𝐺:𝑇𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  {crab 3142  cmpt 5139  wf 6346  1-1-ontowf1o 6349  cfv 6350  (class class class)co 7150  0cc0 10531  1c1 10532   · cmul 10536  cn 11632  cz 11975  ...cfz 12886  ..^cfzo 13027   mod cmo 13231   gcd cgcd 15837  ϕcphi 16095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-gcd 15838
This theorem is referenced by:  eulerthlem2  16113
  Copyright terms: Public domain W3C validator