MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquad2 Structured version   Visualization version   GIF version

Theorem lgsquad2 27364
Description: Extend lgsquad 27361 to coprime odd integers (the domain of the Jacobi symbol). (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgsquad2.1 (𝜑𝑀 ∈ ℕ)
lgsquad2.2 (𝜑 → ¬ 2 ∥ 𝑀)
lgsquad2.3 (𝜑𝑁 ∈ ℕ)
lgsquad2.4 (𝜑 → ¬ 2 ∥ 𝑁)
lgsquad2.5 (𝜑 → (𝑀 gcd 𝑁) = 1)
Assertion
Ref Expression
lgsquad2 (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))

Proof of Theorem lgsquad2
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgsquad2.1 . 2 (𝜑𝑀 ∈ ℕ)
2 lgsquad2.2 . 2 (𝜑 → ¬ 2 ∥ 𝑀)
3 lgsquad2.3 . 2 (𝜑𝑁 ∈ ℕ)
4 lgsquad2.4 . 2 (𝜑 → ¬ 2 ∥ 𝑁)
5 lgsquad2.5 . 2 (𝜑 → (𝑀 gcd 𝑁) = 1)
63adantr 479 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑁 ∈ ℕ)
74adantr 479 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ¬ 2 ∥ 𝑁)
8 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ∈ (ℙ ∖ {2}))
9 eldifi 4123 . . . . . 6 (𝑚 ∈ (ℙ ∖ {2}) → 𝑚 ∈ ℙ)
108, 9syl 17 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ∈ ℙ)
11 prmnn 16648 . . . . 5 (𝑚 ∈ ℙ → 𝑚 ∈ ℕ)
1210, 11syl 17 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ∈ ℕ)
13 eldifsni 4795 . . . . . . . 8 (𝑚 ∈ (ℙ ∖ {2}) → 𝑚 ≠ 2)
148, 13syl 17 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ≠ 2)
1514necomd 2985 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 2 ≠ 𝑚)
1615neneqd 2934 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ¬ 2 = 𝑚)
17 2z 12627 . . . . . . 7 2 ∈ ℤ
18 uzid 12870 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
1917, 18ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
20 dvdsprm 16677 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝑚 ∈ ℙ) → (2 ∥ 𝑚 ↔ 2 = 𝑚))
2119, 10, 20sylancr 585 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (2 ∥ 𝑚 ↔ 2 = 𝑚))
2216, 21mtbird 324 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ¬ 2 ∥ 𝑚)
236nnzd 12618 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑁 ∈ ℤ)
2412nnzd 12618 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ∈ ℤ)
2523, 24gcdcomd 16492 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑁 gcd 𝑚) = (𝑚 gcd 𝑁))
26 simprr 771 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑚 gcd 𝑁) = 1)
2725, 26eqtrd 2765 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑁 gcd 𝑚) = 1)
28 simprl 769 . . . . 5 (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ (𝑛 ∈ (ℙ ∖ {2}) ∧ (𝑛 gcd 𝑚) = 1)) → 𝑛 ∈ (ℙ ∖ {2}))
298adantr 479 . . . . 5 (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ (𝑛 ∈ (ℙ ∖ {2}) ∧ (𝑛 gcd 𝑚) = 1)) → 𝑚 ∈ (ℙ ∖ {2}))
30 eldifi 4123 . . . . . . . 8 (𝑛 ∈ (ℙ ∖ {2}) → 𝑛 ∈ ℙ)
31 prmrp 16686 . . . . . . . 8 ((𝑛 ∈ ℙ ∧ 𝑚 ∈ ℙ) → ((𝑛 gcd 𝑚) = 1 ↔ 𝑛𝑚))
3230, 10, 31syl2anr 595 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ 𝑛 ∈ (ℙ ∖ {2})) → ((𝑛 gcd 𝑚) = 1 ↔ 𝑛𝑚))
3332biimpd 228 . . . . . 6 (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ 𝑛 ∈ (ℙ ∖ {2})) → ((𝑛 gcd 𝑚) = 1 → 𝑛𝑚))
3433impr 453 . . . . 5 (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ (𝑛 ∈ (ℙ ∖ {2}) ∧ (𝑛 gcd 𝑚) = 1)) → 𝑛𝑚)
35 lgsquad 27361 . . . . 5 ((𝑛 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ (ℙ ∖ {2}) ∧ 𝑛𝑚) → ((𝑛 /L 𝑚) · (𝑚 /L 𝑛)) = (-1↑(((𝑛 − 1) / 2) · ((𝑚 − 1) / 2))))
3628, 29, 34, 35syl3anc 1368 . . . 4 (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ (𝑛 ∈ (ℙ ∖ {2}) ∧ (𝑛 gcd 𝑚) = 1)) → ((𝑛 /L 𝑚) · (𝑚 /L 𝑛)) = (-1↑(((𝑛 − 1) / 2) · ((𝑚 − 1) / 2))))
37 biid 260 . . . 4 (∀𝑥 ∈ (1...𝑦)((𝑥 gcd (2 · 𝑚)) = 1 → ((𝑥 /L 𝑚) · (𝑚 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑚 − 1) / 2)))) ↔ ∀𝑥 ∈ (1...𝑦)((𝑥 gcd (2 · 𝑚)) = 1 → ((𝑥 /L 𝑚) · (𝑚 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑚 − 1) / 2)))))
386, 7, 12, 22, 27, 36, 37lgsquad2lem2 27363 . . 3 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑁 /L 𝑚) · (𝑚 /L 𝑁)) = (-1↑(((𝑁 − 1) / 2) · ((𝑚 − 1) / 2))))
39 lgscl 27289 . . . . 5 ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑚 /L 𝑁) ∈ ℤ)
4024, 23, 39syl2anc 582 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑚 /L 𝑁) ∈ ℤ)
41 lgscl 27289 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑁 /L 𝑚) ∈ ℤ)
4223, 24, 41syl2anc 582 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑁 /L 𝑚) ∈ ℤ)
43 zcn 12596 . . . . 5 ((𝑚 /L 𝑁) ∈ ℤ → (𝑚 /L 𝑁) ∈ ℂ)
44 zcn 12596 . . . . 5 ((𝑁 /L 𝑚) ∈ ℤ → (𝑁 /L 𝑚) ∈ ℂ)
45 mulcom 11226 . . . . 5 (((𝑚 /L 𝑁) ∈ ℂ ∧ (𝑁 /L 𝑚) ∈ ℂ) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = ((𝑁 /L 𝑚) · (𝑚 /L 𝑁)))
4643, 44, 45syl2an 594 . . . 4 (((𝑚 /L 𝑁) ∈ ℤ ∧ (𝑁 /L 𝑚) ∈ ℤ) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = ((𝑁 /L 𝑚) · (𝑚 /L 𝑁)))
4740, 42, 46syl2anc 582 . . 3 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = ((𝑁 /L 𝑚) · (𝑚 /L 𝑁)))
4812nncnd 12261 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ∈ ℂ)
49 ax-1cn 11198 . . . . . . 7 1 ∈ ℂ
50 subcl 11491 . . . . . . 7 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑚 − 1) ∈ ℂ)
5148, 49, 50sylancl 584 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑚 − 1) ∈ ℂ)
5251halfcld 12490 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 − 1) / 2) ∈ ℂ)
536nncnd 12261 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑁 ∈ ℂ)
54 subcl 11491 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − 1) ∈ ℂ)
5553, 49, 54sylancl 584 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑁 − 1) ∈ ℂ)
5655halfcld 12490 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑁 − 1) / 2) ∈ ℂ)
5752, 56mulcomd 11267 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)) = (((𝑁 − 1) / 2) · ((𝑚 − 1) / 2)))
5857oveq2d 7435 . . 3 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) = (-1↑(((𝑁 − 1) / 2) · ((𝑚 − 1) / 2))))
5938, 47, 583eqtr4d 2775 . 2 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))
60 biid 260 . 2 (∀𝑥 ∈ (1...𝑦)((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ↔ ∀𝑥 ∈ (1...𝑦)((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))))
611, 2, 3, 4, 5, 59, 60lgsquad2lem2 27363 1 (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2929  wral 3050  cdif 3941  {csn 4630   class class class wbr 5149  cfv 6549  (class class class)co 7419  cc 11138  1c1 11141   · cmul 11145  cmin 11476  -cneg 11477   / cdiv 11903  cn 12245  2c2 12300  cz 12591  cuz 12855  ...cfz 13519  cexp 14062  cdvds 16234   gcd cgcd 16472  cprime 16645   /L clgs 27272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219  ax-mulf 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8725  df-ec 8727  df-qs 8731  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-sup 9467  df-inf 9468  df-oi 9535  df-dju 9926  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-xnn0 12578  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-fz 13520  df-fzo 13663  df-fl 13793  df-mod 13871  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-sum 15669  df-dvds 16235  df-gcd 16473  df-prm 16646  df-phi 16738  df-pc 16809  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-0g 17426  df-gsum 17427  df-imas 17493  df-qus 17494  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-mulg 19032  df-subg 19086  df-nsg 19087  df-eqg 19088  df-ghm 19176  df-cntz 19280  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-dvr 20352  df-rhm 20423  df-nzr 20464  df-subrng 20495  df-subrg 20520  df-drng 20638  df-field 20639  df-lmod 20757  df-lss 20828  df-lsp 20868  df-sra 21070  df-rgmod 21071  df-lidl 21116  df-rsp 21117  df-2idl 21157  df-rlreg 21247  df-domn 21248  df-idom 21249  df-cnfld 21297  df-zring 21390  df-zrh 21446  df-zn 21449  df-lgs 27273
This theorem is referenced by:  lgsquad3  27365
  Copyright terms: Public domain W3C validator