MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquad2 Structured version   Visualization version   GIF version

Theorem lgsquad2 27324
Description: Extend lgsquad 27321 to coprime odd integers (the domain of the Jacobi symbol). (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgsquad2.1 (𝜑𝑀 ∈ ℕ)
lgsquad2.2 (𝜑 → ¬ 2 ∥ 𝑀)
lgsquad2.3 (𝜑𝑁 ∈ ℕ)
lgsquad2.4 (𝜑 → ¬ 2 ∥ 𝑁)
lgsquad2.5 (𝜑 → (𝑀 gcd 𝑁) = 1)
Assertion
Ref Expression
lgsquad2 (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))

Proof of Theorem lgsquad2
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgsquad2.1 . 2 (𝜑𝑀 ∈ ℕ)
2 lgsquad2.2 . 2 (𝜑 → ¬ 2 ∥ 𝑀)
3 lgsquad2.3 . 2 (𝜑𝑁 ∈ ℕ)
4 lgsquad2.4 . 2 (𝜑 → ¬ 2 ∥ 𝑁)
5 lgsquad2.5 . 2 (𝜑 → (𝑀 gcd 𝑁) = 1)
63adantr 480 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑁 ∈ ℕ)
74adantr 480 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ¬ 2 ∥ 𝑁)
8 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ∈ (ℙ ∖ {2}))
9 eldifi 4078 . . . . . 6 (𝑚 ∈ (ℙ ∖ {2}) → 𝑚 ∈ ℙ)
108, 9syl 17 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ∈ ℙ)
11 prmnn 16585 . . . . 5 (𝑚 ∈ ℙ → 𝑚 ∈ ℕ)
1210, 11syl 17 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ∈ ℕ)
13 eldifsni 4739 . . . . . . . 8 (𝑚 ∈ (ℙ ∖ {2}) → 𝑚 ≠ 2)
148, 13syl 17 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ≠ 2)
1514necomd 2983 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 2 ≠ 𝑚)
1615neneqd 2933 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ¬ 2 = 𝑚)
17 2z 12504 . . . . . . 7 2 ∈ ℤ
18 uzid 12747 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
1917, 18ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
20 dvdsprm 16614 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝑚 ∈ ℙ) → (2 ∥ 𝑚 ↔ 2 = 𝑚))
2119, 10, 20sylancr 587 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (2 ∥ 𝑚 ↔ 2 = 𝑚))
2216, 21mtbird 325 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ¬ 2 ∥ 𝑚)
236nnzd 12495 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑁 ∈ ℤ)
2412nnzd 12495 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ∈ ℤ)
2523, 24gcdcomd 16425 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑁 gcd 𝑚) = (𝑚 gcd 𝑁))
26 simprr 772 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑚 gcd 𝑁) = 1)
2725, 26eqtrd 2766 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑁 gcd 𝑚) = 1)
28 simprl 770 . . . . 5 (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ (𝑛 ∈ (ℙ ∖ {2}) ∧ (𝑛 gcd 𝑚) = 1)) → 𝑛 ∈ (ℙ ∖ {2}))
298adantr 480 . . . . 5 (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ (𝑛 ∈ (ℙ ∖ {2}) ∧ (𝑛 gcd 𝑚) = 1)) → 𝑚 ∈ (ℙ ∖ {2}))
30 eldifi 4078 . . . . . . . 8 (𝑛 ∈ (ℙ ∖ {2}) → 𝑛 ∈ ℙ)
31 prmrp 16623 . . . . . . . 8 ((𝑛 ∈ ℙ ∧ 𝑚 ∈ ℙ) → ((𝑛 gcd 𝑚) = 1 ↔ 𝑛𝑚))
3230, 10, 31syl2anr 597 . . . . . . 7 (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ 𝑛 ∈ (ℙ ∖ {2})) → ((𝑛 gcd 𝑚) = 1 ↔ 𝑛𝑚))
3332biimpd 229 . . . . . 6 (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ 𝑛 ∈ (ℙ ∖ {2})) → ((𝑛 gcd 𝑚) = 1 → 𝑛𝑚))
3433impr 454 . . . . 5 (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ (𝑛 ∈ (ℙ ∖ {2}) ∧ (𝑛 gcd 𝑚) = 1)) → 𝑛𝑚)
35 lgsquad 27321 . . . . 5 ((𝑛 ∈ (ℙ ∖ {2}) ∧ 𝑚 ∈ (ℙ ∖ {2}) ∧ 𝑛𝑚) → ((𝑛 /L 𝑚) · (𝑚 /L 𝑛)) = (-1↑(((𝑛 − 1) / 2) · ((𝑚 − 1) / 2))))
3628, 29, 34, 35syl3anc 1373 . . . 4 (((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) ∧ (𝑛 ∈ (ℙ ∖ {2}) ∧ (𝑛 gcd 𝑚) = 1)) → ((𝑛 /L 𝑚) · (𝑚 /L 𝑛)) = (-1↑(((𝑛 − 1) / 2) · ((𝑚 − 1) / 2))))
37 biid 261 . . . 4 (∀𝑥 ∈ (1...𝑦)((𝑥 gcd (2 · 𝑚)) = 1 → ((𝑥 /L 𝑚) · (𝑚 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑚 − 1) / 2)))) ↔ ∀𝑥 ∈ (1...𝑦)((𝑥 gcd (2 · 𝑚)) = 1 → ((𝑥 /L 𝑚) · (𝑚 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑚 − 1) / 2)))))
386, 7, 12, 22, 27, 36, 37lgsquad2lem2 27323 . . 3 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑁 /L 𝑚) · (𝑚 /L 𝑁)) = (-1↑(((𝑁 − 1) / 2) · ((𝑚 − 1) / 2))))
39 lgscl 27249 . . . . 5 ((𝑚 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑚 /L 𝑁) ∈ ℤ)
4024, 23, 39syl2anc 584 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑚 /L 𝑁) ∈ ℤ)
41 lgscl 27249 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑁 /L 𝑚) ∈ ℤ)
4223, 24, 41syl2anc 584 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑁 /L 𝑚) ∈ ℤ)
43 zcn 12473 . . . . 5 ((𝑚 /L 𝑁) ∈ ℤ → (𝑚 /L 𝑁) ∈ ℂ)
44 zcn 12473 . . . . 5 ((𝑁 /L 𝑚) ∈ ℤ → (𝑁 /L 𝑚) ∈ ℂ)
45 mulcom 11092 . . . . 5 (((𝑚 /L 𝑁) ∈ ℂ ∧ (𝑁 /L 𝑚) ∈ ℂ) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = ((𝑁 /L 𝑚) · (𝑚 /L 𝑁)))
4643, 44, 45syl2an 596 . . . 4 (((𝑚 /L 𝑁) ∈ ℤ ∧ (𝑁 /L 𝑚) ∈ ℤ) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = ((𝑁 /L 𝑚) · (𝑚 /L 𝑁)))
4740, 42, 46syl2anc 584 . . 3 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = ((𝑁 /L 𝑚) · (𝑚 /L 𝑁)))
4812nncnd 12141 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑚 ∈ ℂ)
49 ax-1cn 11064 . . . . . . 7 1 ∈ ℂ
50 subcl 11359 . . . . . . 7 ((𝑚 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑚 − 1) ∈ ℂ)
5148, 49, 50sylancl 586 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑚 − 1) ∈ ℂ)
5251halfcld 12366 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 − 1) / 2) ∈ ℂ)
536nncnd 12141 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → 𝑁 ∈ ℂ)
54 subcl 11359 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − 1) ∈ ℂ)
5553, 49, 54sylancl 586 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (𝑁 − 1) ∈ ℂ)
5655halfcld 12366 . . . . 5 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑁 − 1) / 2) ∈ ℂ)
5752, 56mulcomd 11133 . . . 4 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (((𝑚 − 1) / 2) · ((𝑁 − 1) / 2)) = (((𝑁 − 1) / 2) · ((𝑚 − 1) / 2)))
5857oveq2d 7362 . . 3 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))) = (-1↑(((𝑁 − 1) / 2) · ((𝑚 − 1) / 2))))
5938, 47, 583eqtr4d 2776 . 2 ((𝜑 ∧ (𝑚 ∈ (ℙ ∖ {2}) ∧ (𝑚 gcd 𝑁) = 1)) → ((𝑚 /L 𝑁) · (𝑁 /L 𝑚)) = (-1↑(((𝑚 − 1) / 2) · ((𝑁 − 1) / 2))))
60 biid 261 . 2 (∀𝑥 ∈ (1...𝑦)((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))) ↔ ∀𝑥 ∈ (1...𝑦)((𝑥 gcd (2 · 𝑁)) = 1 → ((𝑥 /L 𝑁) · (𝑁 /L 𝑥)) = (-1↑(((𝑥 − 1) / 2) · ((𝑁 − 1) / 2)))))
611, 2, 3, 4, 5, 59, 60lgsquad2lem2 27323 1 (𝜑 → ((𝑀 /L 𝑁) · (𝑁 /L 𝑀)) = (-1↑(((𝑀 − 1) / 2) · ((𝑁 − 1) / 2))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  cdif 3894  {csn 4573   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  1c1 11007   · cmul 11011  cmin 11344  -cneg 11345   / cdiv 11774  cn 12125  2c2 12180  cz 12468  cuz 12732  ...cfz 13407  cexp 13968  cdvds 16163   gcd cgcd 16405  cprime 16582   /L clgs 27232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-ec 8624  df-qs 8628  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-dvds 16164  df-gcd 16406  df-prm 16583  df-phi 16677  df-pc 16749  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-gsum 17346  df-imas 17412  df-qus 17413  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-nsg 19037  df-eqg 19038  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-dvr 20319  df-rhm 20390  df-nzr 20428  df-subrng 20461  df-subrg 20485  df-rlreg 20609  df-domn 20610  df-idom 20611  df-drng 20646  df-field 20647  df-lmod 20795  df-lss 20865  df-lsp 20905  df-sra 21107  df-rgmod 21108  df-lidl 21145  df-rsp 21146  df-2idl 21187  df-cnfld 21292  df-zring 21384  df-zrh 21440  df-zn 21443  df-lgs 27233
This theorem is referenced by:  lgsquad3  27325
  Copyright terms: Public domain W3C validator