MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfect1 Structured version   Visualization version   GIF version

Theorem perfect1 27115
Description: Euclid's contribution to the Euclid-Euler theorem. A number of the form 2↑(𝑝 − 1) · (2↑𝑝 − 1) is a perfect number. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
perfect1 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((2↑𝑃) · ((2↑𝑃) − 1)))

Proof of Theorem perfect1
StepHypRef Expression
1 mersenne 27114 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℙ)
2 prmnn 16620 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 17 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℕ)
4 1sgm2ppw 27087 . . . 4 (𝑃 ∈ ℕ → (1 σ (2↑(𝑃 − 1))) = ((2↑𝑃) − 1))
53, 4syl 17 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ (2↑(𝑃 − 1))) = ((2↑𝑃) − 1))
6 1sgmprm 27086 . . . . 5 (((2↑𝑃) − 1) ∈ ℙ → (1 σ ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) + 1))
76adantl 481 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) + 1))
8 2nn 12235 . . . . . . 7 2 ∈ ℕ
93nnnn0d 12479 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℕ0)
10 nnexpcl 14015 . . . . . . 7 ((2 ∈ ℕ ∧ 𝑃 ∈ ℕ0) → (2↑𝑃) ∈ ℕ)
118, 9, 10sylancr 587 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑𝑃) ∈ ℕ)
1211nncnd 12178 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑𝑃) ∈ ℂ)
13 ax-1cn 11102 . . . . 5 1 ∈ ℂ
14 npcan 11406 . . . . 5 (((2↑𝑃) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑𝑃) − 1) + 1) = (2↑𝑃))
1512, 13, 14sylancl 586 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) + 1) = (2↑𝑃))
167, 15eqtrd 2764 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑𝑃) − 1)) = (2↑𝑃))
175, 16oveq12d 7387 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((1 σ (2↑(𝑃 − 1))) · (1 σ ((2↑𝑃) − 1))) = (((2↑𝑃) − 1) · (2↑𝑃)))
1813a1i 11 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 ∈ ℂ)
19 nnm1nn0 12459 . . . . 5 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
203, 19syl 17 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (𝑃 − 1) ∈ ℕ0)
21 nnexpcl 14015 . . . 4 ((2 ∈ ℕ ∧ (𝑃 − 1) ∈ ℕ0) → (2↑(𝑃 − 1)) ∈ ℕ)
228, 20, 21sylancr 587 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑(𝑃 − 1)) ∈ ℕ)
23 prmnn 16620 . . . 4 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ ℕ)
2423adantl 481 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ ℕ)
2522nnzd 12532 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑(𝑃 − 1)) ∈ ℤ)
26 prmz 16621 . . . . . 6 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ ℤ)
2726adantl 481 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ ℤ)
2825, 27gcdcomd 16460 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑(𝑃 − 1)) gcd ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))))
29 iddvds 16215 . . . . . . . 8 (((2↑𝑃) − 1) ∈ ℤ → ((2↑𝑃) − 1) ∥ ((2↑𝑃) − 1))
3027, 29syl 17 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∥ ((2↑𝑃) − 1))
31 prmuz2 16642 . . . . . . . . . 10 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ (ℤ‘2))
3231adantl 481 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ (ℤ‘2))
33 eluz2gt1 12855 . . . . . . . . 9 (((2↑𝑃) − 1) ∈ (ℤ‘2) → 1 < ((2↑𝑃) − 1))
3432, 33syl 17 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 < ((2↑𝑃) − 1))
35 ndvdsp1 16357 . . . . . . . 8 ((((2↑𝑃) − 1) ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℕ ∧ 1 < ((2↑𝑃) − 1)) → (((2↑𝑃) − 1) ∥ ((2↑𝑃) − 1) → ¬ ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1)))
3627, 24, 34, 35syl3anc 1373 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) ∥ ((2↑𝑃) − 1) → ¬ ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1)))
3730, 36mpd 15 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ¬ ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1))
38 2z 12541 . . . . . . . . 9 2 ∈ ℤ
3938a1i 11 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 2 ∈ ℤ)
40 dvdsmultr1 16242 . . . . . . . 8 ((((2↑𝑃) − 1) ∈ ℤ ∧ (2↑(𝑃 − 1)) ∈ ℤ ∧ 2 ∈ ℤ) → (((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) → ((2↑𝑃) − 1) ∥ ((2↑(𝑃 − 1)) · 2)))
4127, 25, 39, 40syl3anc 1373 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) → ((2↑𝑃) − 1) ∥ ((2↑(𝑃 − 1)) · 2)))
42 2cn 12237 . . . . . . . . . 10 2 ∈ ℂ
43 expm1t 14031 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝑃 ∈ ℕ) → (2↑𝑃) = ((2↑(𝑃 − 1)) · 2))
4442, 3, 43sylancr 587 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑𝑃) = ((2↑(𝑃 − 1)) · 2))
4515, 44eqtr2d 2765 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑(𝑃 − 1)) · 2) = (((2↑𝑃) − 1) + 1))
4645breq2d 5114 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) ∥ ((2↑(𝑃 − 1)) · 2) ↔ ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1)))
4741, 46sylibd 239 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) → ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1)))
4837, 47mtod 198 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ¬ ((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)))
49 simpr 484 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ ℙ)
50 coprm 16657 . . . . . 6 ((((2↑𝑃) − 1) ∈ ℙ ∧ (2↑(𝑃 − 1)) ∈ ℤ) → (¬ ((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) ↔ (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))) = 1))
5149, 25, 50syl2anc 584 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (¬ ((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) ↔ (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))) = 1))
5248, 51mpbid 232 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))) = 1)
5328, 52eqtrd 2764 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑(𝑃 − 1)) gcd ((2↑𝑃) − 1)) = 1)
54 sgmmul 27088 . . 3 ((1 ∈ ℂ ∧ ((2↑(𝑃 − 1)) ∈ ℕ ∧ ((2↑𝑃) − 1) ∈ ℕ ∧ ((2↑(𝑃 − 1)) gcd ((2↑𝑃) − 1)) = 1)) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((1 σ (2↑(𝑃 − 1))) · (1 σ ((2↑𝑃) − 1))))
5518, 22, 24, 53, 54syl13anc 1374 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((1 σ (2↑(𝑃 − 1))) · (1 σ ((2↑𝑃) − 1))))
56 subcl 11396 . . . 4 (((2↑𝑃) ∈ ℂ ∧ 1 ∈ ℂ) → ((2↑𝑃) − 1) ∈ ℂ)
5712, 13, 56sylancl 586 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ ℂ)
5812, 57mulcomd 11171 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) · ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) · (2↑𝑃)))
5917, 55, 583eqtr4d 2774 1 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((2↑𝑃) · ((2↑𝑃) − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cmin 11381  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  cexp 14002  cdvds 16198   gcd cgcd 16440  cprime 16617   σ csgm 26982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-dvds 16199  df-gcd 16441  df-prm 16618  df-pc 16784  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441  df-cxp 26442  df-sgm 26988
This theorem is referenced by:  perfect  27118  perfectALTV  47697
  Copyright terms: Public domain W3C validator