MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfect1 Structured version   Visualization version   GIF version

Theorem perfect1 25806
Description: Euclid's contribution to the Euclid-Euler theorem. A number of the form 2↑(𝑝 − 1) · (2↑𝑝 − 1) is a perfect number. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
perfect1 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((2↑𝑃) · ((2↑𝑃) − 1)))

Proof of Theorem perfect1
StepHypRef Expression
1 mersenne 25805 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℙ)
2 prmnn 16020 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 17 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℕ)
4 1sgm2ppw 25778 . . . 4 (𝑃 ∈ ℕ → (1 σ (2↑(𝑃 − 1))) = ((2↑𝑃) − 1))
53, 4syl 17 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ (2↑(𝑃 − 1))) = ((2↑𝑃) − 1))
6 1sgmprm 25777 . . . . 5 (((2↑𝑃) − 1) ∈ ℙ → (1 σ ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) + 1))
76adantl 484 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) + 1))
8 2nn 11713 . . . . . . 7 2 ∈ ℕ
93nnnn0d 11958 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℕ0)
10 nnexpcl 13445 . . . . . . 7 ((2 ∈ ℕ ∧ 𝑃 ∈ ℕ0) → (2↑𝑃) ∈ ℕ)
118, 9, 10sylancr 589 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑𝑃) ∈ ℕ)
1211nncnd 11656 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑𝑃) ∈ ℂ)
13 ax-1cn 10597 . . . . 5 1 ∈ ℂ
14 npcan 10897 . . . . 5 (((2↑𝑃) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑𝑃) − 1) + 1) = (2↑𝑃))
1512, 13, 14sylancl 588 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) + 1) = (2↑𝑃))
167, 15eqtrd 2858 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑𝑃) − 1)) = (2↑𝑃))
175, 16oveq12d 7176 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((1 σ (2↑(𝑃 − 1))) · (1 σ ((2↑𝑃) − 1))) = (((2↑𝑃) − 1) · (2↑𝑃)))
1813a1i 11 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 ∈ ℂ)
19 nnm1nn0 11941 . . . . 5 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
203, 19syl 17 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (𝑃 − 1) ∈ ℕ0)
21 nnexpcl 13445 . . . 4 ((2 ∈ ℕ ∧ (𝑃 − 1) ∈ ℕ0) → (2↑(𝑃 − 1)) ∈ ℕ)
228, 20, 21sylancr 589 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑(𝑃 − 1)) ∈ ℕ)
23 prmnn 16020 . . . 4 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ ℕ)
2423adantl 484 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ ℕ)
2522nnzd 12089 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑(𝑃 − 1)) ∈ ℤ)
26 prmz 16021 . . . . . 6 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ ℤ)
2726adantl 484 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ ℤ)
28 gcdcom 15864 . . . . 5 (((2↑(𝑃 − 1)) ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℤ) → ((2↑(𝑃 − 1)) gcd ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))))
2925, 27, 28syl2anc 586 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑(𝑃 − 1)) gcd ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))))
30 iddvds 15625 . . . . . . . 8 (((2↑𝑃) − 1) ∈ ℤ → ((2↑𝑃) − 1) ∥ ((2↑𝑃) − 1))
3127, 30syl 17 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∥ ((2↑𝑃) − 1))
32 prmuz2 16042 . . . . . . . . . 10 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ (ℤ‘2))
3332adantl 484 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ (ℤ‘2))
34 eluz2gt1 12323 . . . . . . . . 9 (((2↑𝑃) − 1) ∈ (ℤ‘2) → 1 < ((2↑𝑃) − 1))
3533, 34syl 17 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 < ((2↑𝑃) − 1))
36 ndvdsp1 15764 . . . . . . . 8 ((((2↑𝑃) − 1) ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℕ ∧ 1 < ((2↑𝑃) − 1)) → (((2↑𝑃) − 1) ∥ ((2↑𝑃) − 1) → ¬ ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1)))
3727, 24, 35, 36syl3anc 1367 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) ∥ ((2↑𝑃) − 1) → ¬ ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1)))
3831, 37mpd 15 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ¬ ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1))
39 2z 12017 . . . . . . . . 9 2 ∈ ℤ
4039a1i 11 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 2 ∈ ℤ)
41 dvdsmultr1 15649 . . . . . . . 8 ((((2↑𝑃) − 1) ∈ ℤ ∧ (2↑(𝑃 − 1)) ∈ ℤ ∧ 2 ∈ ℤ) → (((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) → ((2↑𝑃) − 1) ∥ ((2↑(𝑃 − 1)) · 2)))
4227, 25, 40, 41syl3anc 1367 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) → ((2↑𝑃) − 1) ∥ ((2↑(𝑃 − 1)) · 2)))
43 2cn 11715 . . . . . . . . . 10 2 ∈ ℂ
44 expm1t 13460 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝑃 ∈ ℕ) → (2↑𝑃) = ((2↑(𝑃 − 1)) · 2))
4543, 3, 44sylancr 589 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑𝑃) = ((2↑(𝑃 − 1)) · 2))
4615, 45eqtr2d 2859 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑(𝑃 − 1)) · 2) = (((2↑𝑃) − 1) + 1))
4746breq2d 5080 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) ∥ ((2↑(𝑃 − 1)) · 2) ↔ ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1)))
4842, 47sylibd 241 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) → ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1)))
4938, 48mtod 200 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ¬ ((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)))
50 simpr 487 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ ℙ)
51 coprm 16057 . . . . . 6 ((((2↑𝑃) − 1) ∈ ℙ ∧ (2↑(𝑃 − 1)) ∈ ℤ) → (¬ ((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) ↔ (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))) = 1))
5250, 25, 51syl2anc 586 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (¬ ((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) ↔ (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))) = 1))
5349, 52mpbid 234 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))) = 1)
5429, 53eqtrd 2858 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑(𝑃 − 1)) gcd ((2↑𝑃) − 1)) = 1)
55 sgmmul 25779 . . 3 ((1 ∈ ℂ ∧ ((2↑(𝑃 − 1)) ∈ ℕ ∧ ((2↑𝑃) − 1) ∈ ℕ ∧ ((2↑(𝑃 − 1)) gcd ((2↑𝑃) − 1)) = 1)) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((1 σ (2↑(𝑃 − 1))) · (1 σ ((2↑𝑃) − 1))))
5618, 22, 24, 54, 55syl13anc 1368 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((1 σ (2↑(𝑃 − 1))) · (1 σ ((2↑𝑃) − 1))))
57 subcl 10887 . . . 4 (((2↑𝑃) ∈ ℂ ∧ 1 ∈ ℂ) → ((2↑𝑃) − 1) ∈ ℂ)
5812, 13, 57sylancl 588 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ ℂ)
5912, 58mulcomd 10664 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) · ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) · (2↑𝑃)))
6017, 56, 593eqtr4d 2868 1 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((2↑𝑃) · ((2↑𝑃) − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cmin 10872  cn 11640  2c2 11695  0cn0 11900  cz 11984  cuz 12246  cexp 13432  cdvds 15609   gcd cgcd 15845  cprime 16017   σ csgm 25675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-dvds 15610  df-gcd 15846  df-prm 16018  df-pc 16176  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-log 25142  df-cxp 25143  df-sgm 25681
This theorem is referenced by:  perfect  25809  perfectALTV  43895
  Copyright terms: Public domain W3C validator