MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfect1 Structured version   Visualization version   GIF version

Theorem perfect1 27286
Description: Euclid's contribution to the Euclid-Euler theorem. A number of the form 2↑(𝑝 − 1) · (2↑𝑝 − 1) is a perfect number. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
perfect1 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((2↑𝑃) · ((2↑𝑃) − 1)))

Proof of Theorem perfect1
StepHypRef Expression
1 mersenne 27285 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℙ)
2 prmnn 16707 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
31, 2syl 17 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℕ)
4 1sgm2ppw 27258 . . . 4 (𝑃 ∈ ℕ → (1 σ (2↑(𝑃 − 1))) = ((2↑𝑃) − 1))
53, 4syl 17 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ (2↑(𝑃 − 1))) = ((2↑𝑃) − 1))
6 1sgmprm 27257 . . . . 5 (((2↑𝑃) − 1) ∈ ℙ → (1 σ ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) + 1))
76adantl 481 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) + 1))
8 2nn 12336 . . . . . . 7 2 ∈ ℕ
93nnnn0d 12584 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 𝑃 ∈ ℕ0)
10 nnexpcl 14111 . . . . . . 7 ((2 ∈ ℕ ∧ 𝑃 ∈ ℕ0) → (2↑𝑃) ∈ ℕ)
118, 9, 10sylancr 587 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑𝑃) ∈ ℕ)
1211nncnd 12279 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑𝑃) ∈ ℂ)
13 ax-1cn 11210 . . . . 5 1 ∈ ℂ
14 npcan 11514 . . . . 5 (((2↑𝑃) ∈ ℂ ∧ 1 ∈ ℂ) → (((2↑𝑃) − 1) + 1) = (2↑𝑃))
1512, 13, 14sylancl 586 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) + 1) = (2↑𝑃))
167, 15eqtrd 2774 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑𝑃) − 1)) = (2↑𝑃))
175, 16oveq12d 7448 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((1 σ (2↑(𝑃 − 1))) · (1 σ ((2↑𝑃) − 1))) = (((2↑𝑃) − 1) · (2↑𝑃)))
1813a1i 11 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 ∈ ℂ)
19 nnm1nn0 12564 . . . . 5 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
203, 19syl 17 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (𝑃 − 1) ∈ ℕ0)
21 nnexpcl 14111 . . . 4 ((2 ∈ ℕ ∧ (𝑃 − 1) ∈ ℕ0) → (2↑(𝑃 − 1)) ∈ ℕ)
228, 20, 21sylancr 587 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑(𝑃 − 1)) ∈ ℕ)
23 prmnn 16707 . . . 4 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ ℕ)
2423adantl 481 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ ℕ)
2522nnzd 12637 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑(𝑃 − 1)) ∈ ℤ)
26 prmz 16708 . . . . . 6 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ ℤ)
2726adantl 481 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ ℤ)
2825, 27gcdcomd 16547 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑(𝑃 − 1)) gcd ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))))
29 iddvds 16303 . . . . . . . 8 (((2↑𝑃) − 1) ∈ ℤ → ((2↑𝑃) − 1) ∥ ((2↑𝑃) − 1))
3027, 29syl 17 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∥ ((2↑𝑃) − 1))
31 prmuz2 16729 . . . . . . . . . 10 (((2↑𝑃) − 1) ∈ ℙ → ((2↑𝑃) − 1) ∈ (ℤ‘2))
3231adantl 481 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ (ℤ‘2))
33 eluz2gt1 12959 . . . . . . . . 9 (((2↑𝑃) − 1) ∈ (ℤ‘2) → 1 < ((2↑𝑃) − 1))
3432, 33syl 17 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 1 < ((2↑𝑃) − 1))
35 ndvdsp1 16444 . . . . . . . 8 ((((2↑𝑃) − 1) ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℕ ∧ 1 < ((2↑𝑃) − 1)) → (((2↑𝑃) − 1) ∥ ((2↑𝑃) − 1) → ¬ ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1)))
3627, 24, 34, 35syl3anc 1370 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) ∥ ((2↑𝑃) − 1) → ¬ ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1)))
3730, 36mpd 15 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ¬ ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1))
38 2z 12646 . . . . . . . . 9 2 ∈ ℤ
3938a1i 11 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → 2 ∈ ℤ)
40 dvdsmultr1 16329 . . . . . . . 8 ((((2↑𝑃) − 1) ∈ ℤ ∧ (2↑(𝑃 − 1)) ∈ ℤ ∧ 2 ∈ ℤ) → (((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) → ((2↑𝑃) − 1) ∥ ((2↑(𝑃 − 1)) · 2)))
4127, 25, 39, 40syl3anc 1370 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) → ((2↑𝑃) − 1) ∥ ((2↑(𝑃 − 1)) · 2)))
42 2cn 12338 . . . . . . . . . 10 2 ∈ ℂ
43 expm1t 14127 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝑃 ∈ ℕ) → (2↑𝑃) = ((2↑(𝑃 − 1)) · 2))
4442, 3, 43sylancr 587 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (2↑𝑃) = ((2↑(𝑃 − 1)) · 2))
4515, 44eqtr2d 2775 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑(𝑃 − 1)) · 2) = (((2↑𝑃) − 1) + 1))
4645breq2d 5159 . . . . . . 7 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) ∥ ((2↑(𝑃 − 1)) · 2) ↔ ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1)))
4741, 46sylibd 239 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) → ((2↑𝑃) − 1) ∥ (((2↑𝑃) − 1) + 1)))
4837, 47mtod 198 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ¬ ((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)))
49 simpr 484 . . . . . 6 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ ℙ)
50 coprm 16744 . . . . . 6 ((((2↑𝑃) − 1) ∈ ℙ ∧ (2↑(𝑃 − 1)) ∈ ℤ) → (¬ ((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) ↔ (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))) = 1))
5149, 25, 50syl2anc 584 . . . . 5 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (¬ ((2↑𝑃) − 1) ∥ (2↑(𝑃 − 1)) ↔ (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))) = 1))
5248, 51mpbid 232 . . . 4 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (((2↑𝑃) − 1) gcd (2↑(𝑃 − 1))) = 1)
5328, 52eqtrd 2774 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑(𝑃 − 1)) gcd ((2↑𝑃) − 1)) = 1)
54 sgmmul 27259 . . 3 ((1 ∈ ℂ ∧ ((2↑(𝑃 − 1)) ∈ ℕ ∧ ((2↑𝑃) − 1) ∈ ℕ ∧ ((2↑(𝑃 − 1)) gcd ((2↑𝑃) − 1)) = 1)) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((1 σ (2↑(𝑃 − 1))) · (1 σ ((2↑𝑃) − 1))))
5518, 22, 24, 53, 54syl13anc 1371 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((1 σ (2↑(𝑃 − 1))) · (1 σ ((2↑𝑃) − 1))))
56 subcl 11504 . . . 4 (((2↑𝑃) ∈ ℂ ∧ 1 ∈ ℂ) → ((2↑𝑃) − 1) ∈ ℂ)
5712, 13, 56sylancl 586 . . 3 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) − 1) ∈ ℂ)
5812, 57mulcomd 11279 . 2 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → ((2↑𝑃) · ((2↑𝑃) − 1)) = (((2↑𝑃) − 1) · (2↑𝑃)))
5917, 55, 583eqtr4d 2784 1 ((𝑃 ∈ ℤ ∧ ((2↑𝑃) − 1) ∈ ℙ) → (1 σ ((2↑(𝑃 − 1)) · ((2↑𝑃) − 1))) = ((2↑𝑃) · ((2↑𝑃) − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105   class class class wbr 5147  cfv 6562  (class class class)co 7430  cc 11150  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cmin 11489  cn 12263  2c2 12318  0cn0 12523  cz 12610  cuz 12875  cexp 14098  cdvds 16286   gcd cgcd 16527  cprime 16704   σ csgm 27153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-dvds 16287  df-gcd 16528  df-prm 16705  df-pc 16870  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-log 26612  df-cxp 26613  df-sgm 27159
This theorem is referenced by:  perfect  27289  perfectALTV  47647
  Copyright terms: Public domain W3C validator