MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprimeprodsq Structured version   Visualization version   GIF version

Theorem coprimeprodsq 16777
Description: If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
coprimeprodsq (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐴 = ((𝐴 gcd 𝐶)↑2)))

Proof of Theorem coprimeprodsq
StepHypRef Expression
1 nn0z 12614 . . . . . . . 8 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
2 nn0z 12614 . . . . . . . 8 (𝐶 ∈ ℕ0𝐶 ∈ ℤ)
3 gcdcl 16481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 gcd 𝐶) ∈ ℕ0)
41, 2, 3syl2an 595 . . . . . . 7 ((𝐴 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐴 gcd 𝐶) ∈ ℕ0)
543adant2 1129 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐴 gcd 𝐶) ∈ ℕ0)
653ad2ant1 1131 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 gcd 𝐶) ∈ ℕ0)
76nn0cnd 12565 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 gcd 𝐶) ∈ ℂ)
87sqvald 14140 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 gcd 𝐶)↑2) = ((𝐴 gcd 𝐶) · (𝐴 gcd 𝐶)))
9 simp13 1203 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐶 ∈ ℕ0)
109nn0cnd 12565 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐶 ∈ ℂ)
11 nn0cn 12513 . . . . . . . . . 10 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
12113ad2ant1 1131 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → 𝐴 ∈ ℂ)
13123ad2ant1 1131 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐴 ∈ ℂ)
1410, 13mulcomd 11266 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐶 · 𝐴) = (𝐴 · 𝐶))
15 simpl3 1191 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → 𝐶 ∈ ℕ0)
1615nn0cnd 12565 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → 𝐶 ∈ ℂ)
1716sqvald 14140 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → (𝐶↑2) = (𝐶 · 𝐶))
1817eqeq1d 2730 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) ↔ (𝐶 · 𝐶) = (𝐴 · 𝐵)))
1918biimp3a 1466 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐶 · 𝐶) = (𝐴 · 𝐵))
2014, 19oveq12d 7438 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐶 · 𝐴) gcd (𝐶 · 𝐶)) = ((𝐴 · 𝐶) gcd (𝐴 · 𝐵)))
21 simp11 1201 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐴 ∈ ℕ0)
2221nn0zd 12615 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐴 ∈ ℤ)
239nn0zd 12615 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐶 ∈ ℤ)
24 mulgcd 16524 . . . . . . 7 ((𝐶 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 · 𝐴) gcd (𝐶 · 𝐶)) = (𝐶 · (𝐴 gcd 𝐶)))
259, 22, 23, 24syl3anc 1369 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐶 · 𝐴) gcd (𝐶 · 𝐶)) = (𝐶 · (𝐴 gcd 𝐶)))
26 simp12 1202 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐵 ∈ ℤ)
27 mulgcd 16524 . . . . . . 7 ((𝐴 ∈ ℕ0𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐶) gcd (𝐴 · 𝐵)) = (𝐴 · (𝐶 gcd 𝐵)))
2821, 23, 26, 27syl3anc 1369 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 · 𝐶) gcd (𝐴 · 𝐵)) = (𝐴 · (𝐶 gcd 𝐵)))
2920, 25, 283eqtr3d 2776 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐶 · (𝐴 gcd 𝐶)) = (𝐴 · (𝐶 gcd 𝐵)))
3029oveq2d 7436 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐶 · (𝐴 gcd 𝐶))) = ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐴 · (𝐶 gcd 𝐵))))
31 mulgcdr 16526 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ (𝐴 gcd 𝐶) ∈ ℕ0) → ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐶 · (𝐴 gcd 𝐶))) = ((𝐴 gcd 𝐶) · (𝐴 gcd 𝐶)))
3222, 23, 6, 31syl3anc 1369 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐶 · (𝐴 gcd 𝐶))) = ((𝐴 gcd 𝐶) · (𝐴 gcd 𝐶)))
336nn0zd 12615 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 gcd 𝐶) ∈ ℤ)
34 gcdcl 16481 . . . . . . . . . 10 ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶 gcd 𝐵) ∈ ℕ0)
352, 34sylan 579 . . . . . . . . 9 ((𝐶 ∈ ℕ0𝐵 ∈ ℤ) → (𝐶 gcd 𝐵) ∈ ℕ0)
3635ancoms 458 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd 𝐵) ∈ ℕ0)
37363adant1 1128 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd 𝐵) ∈ ℕ0)
38373ad2ant1 1131 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐶 gcd 𝐵) ∈ ℕ0)
3938nn0zd 12615 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐶 gcd 𝐵) ∈ ℤ)
40 mulgcd 16524 . . . . 5 ((𝐴 ∈ ℕ0 ∧ (𝐴 gcd 𝐶) ∈ ℤ ∧ (𝐶 gcd 𝐵) ∈ ℤ) → ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐴 · (𝐶 gcd 𝐵))) = (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))))
4121, 33, 39, 40syl3anc 1369 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐴 · (𝐶 gcd 𝐵))) = (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))))
4230, 32, 413eqtr3d 2776 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 gcd 𝐶) · (𝐴 gcd 𝐶)) = (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))))
4323ad2ant3 1133 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → 𝐶 ∈ ℤ)
44 gcdid 16502 . . . . . . . . . . . . . 14 (𝐶 ∈ ℤ → (𝐶 gcd 𝐶) = (abs‘𝐶))
4543, 44syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd 𝐶) = (abs‘𝐶))
4645oveq1d 7435 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐶 gcd 𝐶) gcd 𝐵) = ((abs‘𝐶) gcd 𝐵))
47 simp2 1135 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → 𝐵 ∈ ℤ)
48 gcdabs1 16504 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((abs‘𝐶) gcd 𝐵) = (𝐶 gcd 𝐵))
4943, 47, 48syl2anc 583 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((abs‘𝐶) gcd 𝐵) = (𝐶 gcd 𝐵))
5046, 49eqtrd 2768 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐶 gcd 𝐶) gcd 𝐵) = (𝐶 gcd 𝐵))
51 gcdass 16523 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐶 gcd 𝐶) gcd 𝐵) = (𝐶 gcd (𝐶 gcd 𝐵)))
5243, 43, 47, 51syl3anc 1369 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐶 gcd 𝐶) gcd 𝐵) = (𝐶 gcd (𝐶 gcd 𝐵)))
5343, 47gcdcomd 16489 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd 𝐵) = (𝐵 gcd 𝐶))
5450, 52, 533eqtr3d 2776 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd (𝐶 gcd 𝐵)) = (𝐵 gcd 𝐶))
5554oveq2d 7436 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐴 gcd (𝐶 gcd (𝐶 gcd 𝐵))) = (𝐴 gcd (𝐵 gcd 𝐶)))
5613ad2ant1 1131 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → 𝐴 ∈ ℤ)
5737nn0zd 12615 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd 𝐵) ∈ ℤ)
58 gcdass 16523 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ (𝐶 gcd 𝐵) ∈ ℤ) → ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵)) = (𝐴 gcd (𝐶 gcd (𝐶 gcd 𝐵))))
5956, 43, 57, 58syl3anc 1369 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵)) = (𝐴 gcd (𝐶 gcd (𝐶 gcd 𝐵))))
60 gcdass 16523 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 gcd 𝐵) gcd 𝐶) = (𝐴 gcd (𝐵 gcd 𝐶)))
6156, 47, 43, 60syl3anc 1369 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐴 gcd 𝐵) gcd 𝐶) = (𝐴 gcd (𝐵 gcd 𝐶)))
6255, 59, 613eqtr4d 2778 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵)) = ((𝐴 gcd 𝐵) gcd 𝐶))
6362eqeq1d 2730 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵)) = 1 ↔ ((𝐴 gcd 𝐵) gcd 𝐶) = 1))
6463biimpar 477 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵)) = 1)
6564oveq2d 7436 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))) = (𝐴 · 1))
66653adant3 1130 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))) = (𝐴 · 1))
6713mulridd 11262 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 · 1) = 𝐴)
6866, 67eqtrd 2768 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))) = 𝐴)
698, 42, 683eqtrrd 2773 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐴 = ((𝐴 gcd 𝐶)↑2))
70693expia 1119 1 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐴 = ((𝐴 gcd 𝐶)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  cfv 6548  (class class class)co 7420  cc 11137  1c1 11140   · cmul 11144  2c2 12298  0cn0 12503  cz 12589  cexp 14059  abscabs 15214   gcd cgcd 16469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9466  df-inf 9467  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-rp 13008  df-fl 13790  df-mod 13868  df-seq 14000  df-exp 14060  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-dvds 16232  df-gcd 16470
This theorem is referenced by:  coprimeprodsq2  16778  pythagtriplem6  16790  flt4lem4  42073
  Copyright terms: Public domain W3C validator