MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coprimeprodsq Structured version   Visualization version   GIF version

Theorem coprimeprodsq 16680
Description: If three numbers are coprime, and the square of one is the product of the other two, then there is a formula for the other two in terms of gcd and square. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
coprimeprodsq (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐴 = ((𝐴 gcd 𝐶)↑2)))

Proof of Theorem coprimeprodsq
StepHypRef Expression
1 nn0z 12524 . . . . . . . 8 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
2 nn0z 12524 . . . . . . . 8 (𝐶 ∈ ℕ0𝐶 ∈ ℤ)
3 gcdcl 16386 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 gcd 𝐶) ∈ ℕ0)
41, 2, 3syl2an 596 . . . . . . 7 ((𝐴 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐴 gcd 𝐶) ∈ ℕ0)
543adant2 1131 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐴 gcd 𝐶) ∈ ℕ0)
653ad2ant1 1133 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 gcd 𝐶) ∈ ℕ0)
76nn0cnd 12475 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 gcd 𝐶) ∈ ℂ)
87sqvald 14048 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 gcd 𝐶)↑2) = ((𝐴 gcd 𝐶) · (𝐴 gcd 𝐶)))
9 simp13 1205 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐶 ∈ ℕ0)
109nn0cnd 12475 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐶 ∈ ℂ)
11 nn0cn 12423 . . . . . . . . . 10 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
12113ad2ant1 1133 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → 𝐴 ∈ ℂ)
13123ad2ant1 1133 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐴 ∈ ℂ)
1410, 13mulcomd 11176 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐶 · 𝐴) = (𝐴 · 𝐶))
15 simpl3 1193 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → 𝐶 ∈ ℕ0)
1615nn0cnd 12475 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → 𝐶 ∈ ℂ)
1716sqvald 14048 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → (𝐶↑2) = (𝐶 · 𝐶))
1817eqeq1d 2738 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) ↔ (𝐶 · 𝐶) = (𝐴 · 𝐵)))
1918biimp3a 1469 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐶 · 𝐶) = (𝐴 · 𝐵))
2014, 19oveq12d 7375 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐶 · 𝐴) gcd (𝐶 · 𝐶)) = ((𝐴 · 𝐶) gcd (𝐴 · 𝐵)))
21 simp11 1203 . . . . . . . 8 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐴 ∈ ℕ0)
2221nn0zd 12525 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐴 ∈ ℤ)
239nn0zd 12525 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐶 ∈ ℤ)
24 mulgcd 16429 . . . . . . 7 ((𝐶 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐶 · 𝐴) gcd (𝐶 · 𝐶)) = (𝐶 · (𝐴 gcd 𝐶)))
259, 22, 23, 24syl3anc 1371 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐶 · 𝐴) gcd (𝐶 · 𝐶)) = (𝐶 · (𝐴 gcd 𝐶)))
26 simp12 1204 . . . . . . 7 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐵 ∈ ℤ)
27 mulgcd 16429 . . . . . . 7 ((𝐴 ∈ ℕ0𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 · 𝐶) gcd (𝐴 · 𝐵)) = (𝐴 · (𝐶 gcd 𝐵)))
2821, 23, 26, 27syl3anc 1371 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 · 𝐶) gcd (𝐴 · 𝐵)) = (𝐴 · (𝐶 gcd 𝐵)))
2920, 25, 283eqtr3d 2784 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐶 · (𝐴 gcd 𝐶)) = (𝐴 · (𝐶 gcd 𝐵)))
3029oveq2d 7373 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐶 · (𝐴 gcd 𝐶))) = ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐴 · (𝐶 gcd 𝐵))))
31 mulgcdr 16431 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ (𝐴 gcd 𝐶) ∈ ℕ0) → ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐶 · (𝐴 gcd 𝐶))) = ((𝐴 gcd 𝐶) · (𝐴 gcd 𝐶)))
3222, 23, 6, 31syl3anc 1371 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐶 · (𝐴 gcd 𝐶))) = ((𝐴 gcd 𝐶) · (𝐴 gcd 𝐶)))
336nn0zd 12525 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 gcd 𝐶) ∈ ℤ)
34 gcdcl 16386 . . . . . . . . . 10 ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐶 gcd 𝐵) ∈ ℕ0)
352, 34sylan 580 . . . . . . . . 9 ((𝐶 ∈ ℕ0𝐵 ∈ ℤ) → (𝐶 gcd 𝐵) ∈ ℕ0)
3635ancoms 459 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd 𝐵) ∈ ℕ0)
37363adant1 1130 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd 𝐵) ∈ ℕ0)
38373ad2ant1 1133 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐶 gcd 𝐵) ∈ ℕ0)
3938nn0zd 12525 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐶 gcd 𝐵) ∈ ℤ)
40 mulgcd 16429 . . . . 5 ((𝐴 ∈ ℕ0 ∧ (𝐴 gcd 𝐶) ∈ ℤ ∧ (𝐶 gcd 𝐵) ∈ ℤ) → ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐴 · (𝐶 gcd 𝐵))) = (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))))
4121, 33, 39, 40syl3anc 1371 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 · (𝐴 gcd 𝐶)) gcd (𝐴 · (𝐶 gcd 𝐵))) = (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))))
4230, 32, 413eqtr3d 2784 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → ((𝐴 gcd 𝐶) · (𝐴 gcd 𝐶)) = (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))))
4323ad2ant3 1135 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → 𝐶 ∈ ℤ)
44 gcdid 16407 . . . . . . . . . . . . . 14 (𝐶 ∈ ℤ → (𝐶 gcd 𝐶) = (abs‘𝐶))
4543, 44syl 17 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd 𝐶) = (abs‘𝐶))
4645oveq1d 7372 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐶 gcd 𝐶) gcd 𝐵) = ((abs‘𝐶) gcd 𝐵))
47 simp2 1137 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → 𝐵 ∈ ℤ)
48 gcdabs1 16409 . . . . . . . . . . . . 13 ((𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((abs‘𝐶) gcd 𝐵) = (𝐶 gcd 𝐵))
4943, 47, 48syl2anc 584 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((abs‘𝐶) gcd 𝐵) = (𝐶 gcd 𝐵))
5046, 49eqtrd 2776 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐶 gcd 𝐶) gcd 𝐵) = (𝐶 gcd 𝐵))
51 gcdass 16428 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐶 gcd 𝐶) gcd 𝐵) = (𝐶 gcd (𝐶 gcd 𝐵)))
5243, 43, 47, 51syl3anc 1371 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐶 gcd 𝐶) gcd 𝐵) = (𝐶 gcd (𝐶 gcd 𝐵)))
5343, 47gcdcomd 16394 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd 𝐵) = (𝐵 gcd 𝐶))
5450, 52, 533eqtr3d 2784 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd (𝐶 gcd 𝐵)) = (𝐵 gcd 𝐶))
5554oveq2d 7373 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐴 gcd (𝐶 gcd (𝐶 gcd 𝐵))) = (𝐴 gcd (𝐵 gcd 𝐶)))
5613ad2ant1 1133 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → 𝐴 ∈ ℤ)
5737nn0zd 12525 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐶 gcd 𝐵) ∈ ℤ)
58 gcdass 16428 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ (𝐶 gcd 𝐵) ∈ ℤ) → ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵)) = (𝐴 gcd (𝐶 gcd (𝐶 gcd 𝐵))))
5956, 43, 57, 58syl3anc 1371 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵)) = (𝐴 gcd (𝐶 gcd (𝐶 gcd 𝐵))))
60 gcdass 16428 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 gcd 𝐵) gcd 𝐶) = (𝐴 gcd (𝐵 gcd 𝐶)))
6156, 47, 43, 60syl3anc 1371 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐴 gcd 𝐵) gcd 𝐶) = (𝐴 gcd (𝐵 gcd 𝐶)))
6255, 59, 613eqtr4d 2786 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵)) = ((𝐴 gcd 𝐵) gcd 𝐶))
6362eqeq1d 2738 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵)) = 1 ↔ ((𝐴 gcd 𝐵) gcd 𝐶) = 1))
6463biimpar 478 . . . . . 6 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵)) = 1)
6564oveq2d 7373 . . . . 5 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))) = (𝐴 · 1))
66653adant3 1132 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))) = (𝐴 · 1))
6713mulid1d 11172 . . . 4 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 · 1) = 𝐴)
6866, 67eqtrd 2776 . . 3 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → (𝐴 · ((𝐴 gcd 𝐶) gcd (𝐶 gcd 𝐵))) = 𝐴)
698, 42, 683eqtrrd 2781 . 2 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1 ∧ (𝐶↑2) = (𝐴 · 𝐵)) → 𝐴 = ((𝐴 gcd 𝐶)↑2))
70693expia 1121 1 (((𝐴 ∈ ℕ0𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) ∧ ((𝐴 gcd 𝐵) gcd 𝐶) = 1) → ((𝐶↑2) = (𝐴 · 𝐵) → 𝐴 = ((𝐴 gcd 𝐶)↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cfv 6496  (class class class)co 7357  cc 11049  1c1 11052   · cmul 11056  2c2 12208  0cn0 12413  cz 12499  cexp 13967  abscabs 15119   gcd cgcd 16374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375
This theorem is referenced by:  coprimeprodsq2  16681  pythagtriplem6  16693  flt4lem4  40973
  Copyright terms: Public domain W3C validator