Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  perfectALTVlem1 Structured version   Visualization version   GIF version

Theorem perfectALTVlem1 47820
Description: Lemma for perfectALTV 47822. (Contributed by Mario Carneiro, 7-Jun-2016.) (Revised by AV, 1-Jul-2020.)
Hypotheses
Ref Expression
perfectALTVlem.1 (𝜑𝐴 ∈ ℕ)
perfectALTVlem.2 (𝜑𝐵 ∈ ℕ)
perfectALTVlem.3 (𝜑𝐵 ∈ Odd )
perfectALTVlem.4 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
Assertion
Ref Expression
perfectALTVlem1 (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))

Proof of Theorem perfectALTVlem1
StepHypRef Expression
1 2nn 12198 . . 3 2 ∈ ℕ
2 perfectALTVlem.1 . . . . 5 (𝜑𝐴 ∈ ℕ)
32nnnn0d 12442 . . . 4 (𝜑𝐴 ∈ ℕ0)
4 peano2nn0 12421 . . . 4 (𝐴 ∈ ℕ0 → (𝐴 + 1) ∈ ℕ0)
53, 4syl 17 . . 3 (𝜑 → (𝐴 + 1) ∈ ℕ0)
6 nnexpcl 13981 . . 3 ((2 ∈ ℕ ∧ (𝐴 + 1) ∈ ℕ0) → (2↑(𝐴 + 1)) ∈ ℕ)
71, 5, 6sylancr 587 . 2 (𝜑 → (2↑(𝐴 + 1)) ∈ ℕ)
8 2re 12199 . . . . 5 2 ∈ ℝ
98a1i 11 . . . 4 (𝜑 → 2 ∈ ℝ)
102peano2nnd 12142 . . . 4 (𝜑 → (𝐴 + 1) ∈ ℕ)
11 1lt2 12291 . . . . 5 1 < 2
1211a1i 11 . . . 4 (𝜑 → 1 < 2)
13 expgt1 14007 . . . 4 ((2 ∈ ℝ ∧ (𝐴 + 1) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(𝐴 + 1)))
149, 10, 12, 13syl3anc 1373 . . 3 (𝜑 → 1 < (2↑(𝐴 + 1)))
15 1nn 12136 . . . 4 1 ∈ ℕ
16 nnsub 12169 . . . 4 ((1 ∈ ℕ ∧ (2↑(𝐴 + 1)) ∈ ℕ) → (1 < (2↑(𝐴 + 1)) ↔ ((2↑(𝐴 + 1)) − 1) ∈ ℕ))
1715, 7, 16sylancr 587 . . 3 (𝜑 → (1 < (2↑(𝐴 + 1)) ↔ ((2↑(𝐴 + 1)) − 1) ∈ ℕ))
1814, 17mpbid 232 . 2 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℕ)
197nnzd 12495 . . . . . . 7 (𝜑 → (2↑(𝐴 + 1)) ∈ ℤ)
20 peano2zm 12515 . . . . . . 7 ((2↑(𝐴 + 1)) ∈ ℤ → ((2↑(𝐴 + 1)) − 1) ∈ ℤ)
2119, 20syl 17 . . . . . 6 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∈ ℤ)
22 1nn0 12397 . . . . . . . 8 1 ∈ ℕ0
23 perfectALTVlem.2 . . . . . . . 8 (𝜑𝐵 ∈ ℕ)
24 sgmnncl 27084 . . . . . . . 8 ((1 ∈ ℕ0𝐵 ∈ ℕ) → (1 σ 𝐵) ∈ ℕ)
2522, 23, 24sylancr 587 . . . . . . 7 (𝜑 → (1 σ 𝐵) ∈ ℕ)
2625nnzd 12495 . . . . . 6 (𝜑 → (1 σ 𝐵) ∈ ℤ)
27 dvdsmul1 16188 . . . . . 6 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (1 σ 𝐵) ∈ ℤ) → ((2↑(𝐴 + 1)) − 1) ∥ (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
2821, 26, 27syl2anc 584 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
29 2cn 12200 . . . . . . . . 9 2 ∈ ℂ
30 expp1 13975 . . . . . . . . 9 ((2 ∈ ℂ ∧ 𝐴 ∈ ℕ0) → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
3129, 3, 30sylancr 587 . . . . . . . 8 (𝜑 → (2↑(𝐴 + 1)) = ((2↑𝐴) · 2))
32 nnexpcl 13981 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ0) → (2↑𝐴) ∈ ℕ)
331, 3, 32sylancr 587 . . . . . . . . . 10 (𝜑 → (2↑𝐴) ∈ ℕ)
3433nncnd 12141 . . . . . . . . 9 (𝜑 → (2↑𝐴) ∈ ℂ)
35 mulcom 11092 . . . . . . . . 9 (((2↑𝐴) ∈ ℂ ∧ 2 ∈ ℂ) → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
3634, 29, 35sylancl 586 . . . . . . . 8 (𝜑 → ((2↑𝐴) · 2) = (2 · (2↑𝐴)))
3731, 36eqtrd 2766 . . . . . . 7 (𝜑 → (2↑(𝐴 + 1)) = (2 · (2↑𝐴)))
3837oveq1d 7361 . . . . . 6 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = ((2 · (2↑𝐴)) · 𝐵))
3929a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
4023nncnd 12141 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4139, 34, 40mulassd 11135 . . . . . 6 (𝜑 → ((2 · (2↑𝐴)) · 𝐵) = (2 · ((2↑𝐴) · 𝐵)))
42 1cnd 11107 . . . . . . . 8 (𝜑 → 1 ∈ ℂ)
43 perfectALTVlem.3 . . . . . . . . . 10 (𝜑𝐵 ∈ Odd )
44 isodd7 47764 . . . . . . . . . . 11 (𝐵 ∈ Odd ↔ (𝐵 ∈ ℤ ∧ (2 gcd 𝐵) = 1))
4544simprbi 496 . . . . . . . . . 10 (𝐵 ∈ Odd → (2 gcd 𝐵) = 1)
4643, 45syl 17 . . . . . . . . 9 (𝜑 → (2 gcd 𝐵) = 1)
47 2z 12504 . . . . . . . . . . 11 2 ∈ ℤ
4847a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℤ)
4923nnzd 12495 . . . . . . . . . 10 (𝜑𝐵 ∈ ℤ)
50 rpexp1i 16634 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℕ0) → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
5148, 49, 3, 50syl3anc 1373 . . . . . . . . 9 (𝜑 → ((2 gcd 𝐵) = 1 → ((2↑𝐴) gcd 𝐵) = 1))
5246, 51mpd 15 . . . . . . . 8 (𝜑 → ((2↑𝐴) gcd 𝐵) = 1)
53 sgmmul 27139 . . . . . . . 8 ((1 ∈ ℂ ∧ ((2↑𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ((2↑𝐴) gcd 𝐵) = 1)) → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
5442, 33, 23, 52, 53syl13anc 1374 . . . . . . 7 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = ((1 σ (2↑𝐴)) · (1 σ 𝐵)))
55 perfectALTVlem.4 . . . . . . 7 (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵)))
562nncnd 12141 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
57 pncan1 11541 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((𝐴 + 1) − 1) = 𝐴)
5856, 57syl 17 . . . . . . . . . . 11 (𝜑 → ((𝐴 + 1) − 1) = 𝐴)
5958oveq2d 7362 . . . . . . . . . 10 (𝜑 → (2↑((𝐴 + 1) − 1)) = (2↑𝐴))
6059oveq2d 7362 . . . . . . . . 9 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = (1 σ (2↑𝐴)))
61 1sgm2ppw 27138 . . . . . . . . . 10 ((𝐴 + 1) ∈ ℕ → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
6210, 61syl 17 . . . . . . . . 9 (𝜑 → (1 σ (2↑((𝐴 + 1) − 1))) = ((2↑(𝐴 + 1)) − 1))
6360, 62eqtr3d 2768 . . . . . . . 8 (𝜑 → (1 σ (2↑𝐴)) = ((2↑(𝐴 + 1)) − 1))
6463oveq1d 7361 . . . . . . 7 (𝜑 → ((1 σ (2↑𝐴)) · (1 σ 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6554, 55, 643eqtr3d 2774 . . . . . 6 (𝜑 → (2 · ((2↑𝐴) · 𝐵)) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6638, 41, 653eqtrd 2770 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) · 𝐵) = (((2↑(𝐴 + 1)) − 1) · (1 σ 𝐵)))
6728, 66breqtrrd 5117 . . . 4 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵))
6821, 19gcdcomd 16425 . . . . 5 (𝜑 → (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)))
69 nnpw2evenALTV 47801 . . . . . . 7 ((𝐴 + 1) ∈ ℕ → (2↑(𝐴 + 1)) ∈ Even )
70 evenm1odd 47738 . . . . . . 7 ((2↑(𝐴 + 1)) ∈ Even → ((2↑(𝐴 + 1)) − 1) ∈ Odd )
71 isodd7 47764 . . . . . . . 8 (((2↑(𝐴 + 1)) − 1) ∈ Odd ↔ (((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1))
7271simprbi 496 . . . . . . 7 (((2↑(𝐴 + 1)) − 1) ∈ Odd → (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1)
7310, 69, 70, 724syl 19 . . . . . 6 (𝜑 → (2 gcd ((2↑(𝐴 + 1)) − 1)) = 1)
74 rpexp1i 16634 . . . . . . 7 ((2 ∈ ℤ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (𝐴 + 1) ∈ ℕ0) → ((2 gcd ((2↑(𝐴 + 1)) − 1)) = 1 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1))
7548, 21, 5, 74syl3anc 1373 . . . . . 6 (𝜑 → ((2 gcd ((2↑(𝐴 + 1)) − 1)) = 1 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1))
7673, 75mpd 15 . . . . 5 (𝜑 → ((2↑(𝐴 + 1)) gcd ((2↑(𝐴 + 1)) − 1)) = 1)
7768, 76eqtrd 2766 . . . 4 (𝜑 → (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1)
78 coprmdvds 16564 . . . . 5 ((((2↑(𝐴 + 1)) − 1) ∈ ℤ ∧ (2↑(𝐴 + 1)) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵) ∧ (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1) → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵))
7921, 19, 49, 78syl3anc 1373 . . . 4 (𝜑 → ((((2↑(𝐴 + 1)) − 1) ∥ ((2↑(𝐴 + 1)) · 𝐵) ∧ (((2↑(𝐴 + 1)) − 1) gcd (2↑(𝐴 + 1))) = 1) → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵))
8067, 77, 79mp2and 699 . . 3 (𝜑 → ((2↑(𝐴 + 1)) − 1) ∥ 𝐵)
81 nndivdvds 16172 . . . 4 ((𝐵 ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ) → (((2↑(𝐴 + 1)) − 1) ∥ 𝐵 ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
8223, 18, 81syl2anc 584 . . 3 (𝜑 → (((2↑(𝐴 + 1)) − 1) ∥ 𝐵 ↔ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
8380, 82mpbid 232 . 2 (𝜑 → (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ)
847, 18, 833jca 1128 1 (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5089  (class class class)co 7346  cc 11004  cr 11005  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cmin 11344   / cdiv 11774  cn 12125  2c2 12180  0cn0 12381  cz 12468  cexp 13968  cdvds 16163   gcd cgcd 16405   σ csgm 27033   Even ceven 47723   Odd codd 47724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-log 26492  df-cxp 26493  df-sgm 27039  df-even 47725  df-odd 47726
This theorem is referenced by:  perfectALTVlem2  47821
  Copyright terms: Public domain W3C validator