| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem3 | Structured version Visualization version GIF version | ||
| Description: Equivalent to pythagtriplem4 16844. Show that 𝐶 + 𝐴 and 𝐶 − 𝐴 are coprime. (Contributed by SN, 22-Aug-2024.) |
| Ref | Expression |
|---|---|
| flt4lem3.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| flt4lem3.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| flt4lem3.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
| flt4lem3.1 | ⊢ (𝜑 → 2 ∥ 𝐴) |
| flt4lem3.2 | ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) |
| flt4lem3.3 | ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) |
| Ref | Expression |
|---|---|
| flt4lem3 | ⊢ (𝜑 → ((𝐶 + 𝐴) gcd (𝐶 − 𝐴)) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flt4lem3.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
| 2 | 1 | nnzd 12620 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| 3 | flt4lem3.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 4 | 3 | nnzd 12620 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 5 | 2, 4 | zaddcld 12706 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐴) ∈ ℤ) |
| 6 | 2, 4 | zsubcld 12707 | . . 3 ⊢ (𝜑 → (𝐶 − 𝐴) ∈ ℤ) |
| 7 | 5, 6 | gcdcomd 16538 | . 2 ⊢ (𝜑 → ((𝐶 + 𝐴) gcd (𝐶 − 𝐴)) = ((𝐶 − 𝐴) gcd (𝐶 + 𝐴))) |
| 8 | flt4lem3.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 9 | flt4lem3.1 | . . . . 5 ⊢ (𝜑 → 2 ∥ 𝐴) | |
| 10 | flt4lem3.2 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | |
| 11 | flt4lem3.3 | . . . . 5 ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) | |
| 12 | 3, 8, 1, 9, 10, 11 | flt4lem2 42637 | . . . 4 ⊢ (𝜑 → ¬ 2 ∥ 𝐵) |
| 13 | 2nn0 12523 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℕ0) |
| 15 | 3, 8, 1, 10, 11 | fltabcoprm 42632 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |
| 16 | 3, 8, 1, 14, 11, 15 | fltbccoprm 42631 | . . . 4 ⊢ (𝜑 → (𝐵 gcd 𝐶) = 1) |
| 17 | 8 | nnsqcld 14267 | . . . . . . 7 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
| 18 | 17 | nncnd 12261 | . . . . . 6 ⊢ (𝜑 → (𝐵↑2) ∈ ℂ) |
| 19 | 3 | nnsqcld 14267 | . . . . . . 7 ⊢ (𝜑 → (𝐴↑2) ∈ ℕ) |
| 20 | 19 | nncnd 12261 | . . . . . 6 ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
| 21 | 18, 20 | addcomd 11442 | . . . . 5 ⊢ (𝜑 → ((𝐵↑2) + (𝐴↑2)) = ((𝐴↑2) + (𝐵↑2))) |
| 22 | 21, 11 | eqtrd 2771 | . . . 4 ⊢ (𝜑 → ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2)) |
| 23 | 8, 3, 1, 12, 16, 22 | flt4lem1 42636 | . . 3 ⊢ (𝜑 → ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2) ∧ ((𝐵 gcd 𝐴) = 1 ∧ ¬ 2 ∥ 𝐵))) |
| 24 | pythagtriplem4 16844 | . . 3 ⊢ (((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2) ∧ ((𝐵 gcd 𝐴) = 1 ∧ ¬ 2 ∥ 𝐵)) → ((𝐶 − 𝐴) gcd (𝐶 + 𝐴)) = 1) | |
| 25 | 23, 24 | syl 17 | . 2 ⊢ (𝜑 → ((𝐶 − 𝐴) gcd (𝐶 + 𝐴)) = 1) |
| 26 | 7, 25 | eqtrd 2771 | 1 ⊢ (𝜑 → ((𝐶 + 𝐴) gcd (𝐶 − 𝐴)) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 (class class class)co 7410 1c1 11135 + caddc 11137 − cmin 11471 ℕcn 12245 2c2 12300 ℕ0cn0 12506 ↑cexp 14084 ∥ cdvds 16277 gcd cgcd 16518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fz 13530 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-dvds 16278 df-gcd 16519 df-prm 16696 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |