| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem3 | Structured version Visualization version GIF version | ||
| Description: Equivalent to pythagtriplem4 16737. Show that 𝐶 + 𝐴 and 𝐶 − 𝐴 are coprime. (Contributed by SN, 22-Aug-2024.) |
| Ref | Expression |
|---|---|
| flt4lem3.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| flt4lem3.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| flt4lem3.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
| flt4lem3.1 | ⊢ (𝜑 → 2 ∥ 𝐴) |
| flt4lem3.2 | ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) |
| flt4lem3.3 | ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) |
| Ref | Expression |
|---|---|
| flt4lem3 | ⊢ (𝜑 → ((𝐶 + 𝐴) gcd (𝐶 − 𝐴)) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flt4lem3.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
| 2 | 1 | nnzd 12501 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| 3 | flt4lem3.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 4 | 3 | nnzd 12501 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 5 | 2, 4 | zaddcld 12587 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐴) ∈ ℤ) |
| 6 | 2, 4 | zsubcld 12588 | . . 3 ⊢ (𝜑 → (𝐶 − 𝐴) ∈ ℤ) |
| 7 | 5, 6 | gcdcomd 16431 | . 2 ⊢ (𝜑 → ((𝐶 + 𝐴) gcd (𝐶 − 𝐴)) = ((𝐶 − 𝐴) gcd (𝐶 + 𝐴))) |
| 8 | flt4lem3.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 9 | flt4lem3.1 | . . . . 5 ⊢ (𝜑 → 2 ∥ 𝐴) | |
| 10 | flt4lem3.2 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | |
| 11 | flt4lem3.3 | . . . . 5 ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) | |
| 12 | 3, 8, 1, 9, 10, 11 | flt4lem2 42746 | . . . 4 ⊢ (𝜑 → ¬ 2 ∥ 𝐵) |
| 13 | 2nn0 12404 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℕ0) |
| 15 | 3, 8, 1, 10, 11 | fltabcoprm 42741 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |
| 16 | 3, 8, 1, 14, 11, 15 | fltbccoprm 42740 | . . . 4 ⊢ (𝜑 → (𝐵 gcd 𝐶) = 1) |
| 17 | 8 | nnsqcld 14157 | . . . . . . 7 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
| 18 | 17 | nncnd 12147 | . . . . . 6 ⊢ (𝜑 → (𝐵↑2) ∈ ℂ) |
| 19 | 3 | nnsqcld 14157 | . . . . . . 7 ⊢ (𝜑 → (𝐴↑2) ∈ ℕ) |
| 20 | 19 | nncnd 12147 | . . . . . 6 ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
| 21 | 18, 20 | addcomd 11321 | . . . . 5 ⊢ (𝜑 → ((𝐵↑2) + (𝐴↑2)) = ((𝐴↑2) + (𝐵↑2))) |
| 22 | 21, 11 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2)) |
| 23 | 8, 3, 1, 12, 16, 22 | flt4lem1 42745 | . . 3 ⊢ (𝜑 → ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2) ∧ ((𝐵 gcd 𝐴) = 1 ∧ ¬ 2 ∥ 𝐵))) |
| 24 | pythagtriplem4 16737 | . . 3 ⊢ (((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2) ∧ ((𝐵 gcd 𝐴) = 1 ∧ ¬ 2 ∥ 𝐵)) → ((𝐶 − 𝐴) gcd (𝐶 + 𝐴)) = 1) | |
| 25 | 23, 24 | syl 17 | . 2 ⊢ (𝜑 → ((𝐶 − 𝐴) gcd (𝐶 + 𝐴)) = 1) |
| 26 | 7, 25 | eqtrd 2766 | 1 ⊢ (𝜑 → ((𝐶 + 𝐴) gcd (𝐶 − 𝐴)) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5093 (class class class)co 7352 1c1 11013 + caddc 11015 − cmin 11350 ℕcn 12131 2c2 12186 ℕ0cn0 12387 ↑cexp 13974 ∥ cdvds 16169 gcd cgcd 16411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9332 df-inf 9333 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-n0 12388 df-z 12475 df-uz 12739 df-rp 12897 df-fz 13414 df-fl 13702 df-mod 13780 df-seq 13915 df-exp 13975 df-cj 15012 df-re 15013 df-im 15014 df-sqrt 15148 df-abs 15149 df-dvds 16170 df-gcd 16412 df-prm 16589 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |