![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem3 | Structured version Visualization version GIF version |
Description: Equivalent to pythagtriplem4 16751. Show that 𝐶 + 𝐴 and 𝐶 − 𝐴 are coprime. (Contributed by SN, 22-Aug-2024.) |
Ref | Expression |
---|---|
flt4lem3.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
flt4lem3.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
flt4lem3.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
flt4lem3.1 | ⊢ (𝜑 → 2 ∥ 𝐴) |
flt4lem3.2 | ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) |
flt4lem3.3 | ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) |
Ref | Expression |
---|---|
flt4lem3 | ⊢ (𝜑 → ((𝐶 + 𝐴) gcd (𝐶 − 𝐴)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flt4lem3.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
2 | 1 | nnzd 12584 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) |
3 | flt4lem3.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
4 | 3 | nnzd 12584 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
5 | 2, 4 | zaddcld 12669 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐴) ∈ ℤ) |
6 | 2, 4 | zsubcld 12670 | . . 3 ⊢ (𝜑 → (𝐶 − 𝐴) ∈ ℤ) |
7 | 5, 6 | gcdcomd 16454 | . 2 ⊢ (𝜑 → ((𝐶 + 𝐴) gcd (𝐶 − 𝐴)) = ((𝐶 − 𝐴) gcd (𝐶 + 𝐴))) |
8 | flt4lem3.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
9 | flt4lem3.1 | . . . . 5 ⊢ (𝜑 → 2 ∥ 𝐴) | |
10 | flt4lem3.2 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | |
11 | flt4lem3.3 | . . . . 5 ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) | |
12 | 3, 8, 1, 9, 10, 11 | flt4lem2 41390 | . . . 4 ⊢ (𝜑 → ¬ 2 ∥ 𝐵) |
13 | 2nn0 12488 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
14 | 13 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℕ0) |
15 | 3, 8, 1, 10, 11 | fltabcoprm 41385 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |
16 | 3, 8, 1, 14, 11, 15 | fltbccoprm 41384 | . . . 4 ⊢ (𝜑 → (𝐵 gcd 𝐶) = 1) |
17 | 8 | nnsqcld 14206 | . . . . . . 7 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
18 | 17 | nncnd 12227 | . . . . . 6 ⊢ (𝜑 → (𝐵↑2) ∈ ℂ) |
19 | 3 | nnsqcld 14206 | . . . . . . 7 ⊢ (𝜑 → (𝐴↑2) ∈ ℕ) |
20 | 19 | nncnd 12227 | . . . . . 6 ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
21 | 18, 20 | addcomd 11415 | . . . . 5 ⊢ (𝜑 → ((𝐵↑2) + (𝐴↑2)) = ((𝐴↑2) + (𝐵↑2))) |
22 | 21, 11 | eqtrd 2772 | . . . 4 ⊢ (𝜑 → ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2)) |
23 | 8, 3, 1, 12, 16, 22 | flt4lem1 41389 | . . 3 ⊢ (𝜑 → ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2) ∧ ((𝐵 gcd 𝐴) = 1 ∧ ¬ 2 ∥ 𝐵))) |
24 | pythagtriplem4 16751 | . . 3 ⊢ (((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2) ∧ ((𝐵 gcd 𝐴) = 1 ∧ ¬ 2 ∥ 𝐵)) → ((𝐶 − 𝐴) gcd (𝐶 + 𝐴)) = 1) | |
25 | 23, 24 | syl 17 | . 2 ⊢ (𝜑 → ((𝐶 − 𝐴) gcd (𝐶 + 𝐴)) = 1) |
26 | 7, 25 | eqtrd 2772 | 1 ⊢ (𝜑 → ((𝐶 + 𝐴) gcd (𝐶 − 𝐴)) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7408 1c1 11110 + caddc 11112 − cmin 11443 ℕcn 12211 2c2 12266 ℕ0cn0 12471 ↑cexp 14026 ∥ cdvds 16196 gcd cgcd 16434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-fz 13484 df-fl 13756 df-mod 13834 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-dvds 16197 df-gcd 16435 df-prm 16608 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |