| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem3 | Structured version Visualization version GIF version | ||
| Description: Equivalent to pythagtriplem4 16790. Show that 𝐶 + 𝐴 and 𝐶 − 𝐴 are coprime. (Contributed by SN, 22-Aug-2024.) |
| Ref | Expression |
|---|---|
| flt4lem3.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| flt4lem3.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| flt4lem3.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
| flt4lem3.1 | ⊢ (𝜑 → 2 ∥ 𝐴) |
| flt4lem3.2 | ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) |
| flt4lem3.3 | ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) |
| Ref | Expression |
|---|---|
| flt4lem3 | ⊢ (𝜑 → ((𝐶 + 𝐴) gcd (𝐶 − 𝐴)) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flt4lem3.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
| 2 | 1 | nnzd 12556 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| 3 | flt4lem3.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 4 | 3 | nnzd 12556 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 5 | 2, 4 | zaddcld 12642 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐴) ∈ ℤ) |
| 6 | 2, 4 | zsubcld 12643 | . . 3 ⊢ (𝜑 → (𝐶 − 𝐴) ∈ ℤ) |
| 7 | 5, 6 | gcdcomd 16484 | . 2 ⊢ (𝜑 → ((𝐶 + 𝐴) gcd (𝐶 − 𝐴)) = ((𝐶 − 𝐴) gcd (𝐶 + 𝐴))) |
| 8 | flt4lem3.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 9 | flt4lem3.1 | . . . . 5 ⊢ (𝜑 → 2 ∥ 𝐴) | |
| 10 | flt4lem3.2 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | |
| 11 | flt4lem3.3 | . . . . 5 ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) | |
| 12 | 3, 8, 1, 9, 10, 11 | flt4lem2 42635 | . . . 4 ⊢ (𝜑 → ¬ 2 ∥ 𝐵) |
| 13 | 2nn0 12459 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℕ0) |
| 15 | 3, 8, 1, 10, 11 | fltabcoprm 42630 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |
| 16 | 3, 8, 1, 14, 11, 15 | fltbccoprm 42629 | . . . 4 ⊢ (𝜑 → (𝐵 gcd 𝐶) = 1) |
| 17 | 8 | nnsqcld 14209 | . . . . . . 7 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
| 18 | 17 | nncnd 12202 | . . . . . 6 ⊢ (𝜑 → (𝐵↑2) ∈ ℂ) |
| 19 | 3 | nnsqcld 14209 | . . . . . . 7 ⊢ (𝜑 → (𝐴↑2) ∈ ℕ) |
| 20 | 19 | nncnd 12202 | . . . . . 6 ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
| 21 | 18, 20 | addcomd 11376 | . . . . 5 ⊢ (𝜑 → ((𝐵↑2) + (𝐴↑2)) = ((𝐴↑2) + (𝐵↑2))) |
| 22 | 21, 11 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2)) |
| 23 | 8, 3, 1, 12, 16, 22 | flt4lem1 42634 | . . 3 ⊢ (𝜑 → ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2) ∧ ((𝐵 gcd 𝐴) = 1 ∧ ¬ 2 ∥ 𝐵))) |
| 24 | pythagtriplem4 16790 | . . 3 ⊢ (((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2) ∧ ((𝐵 gcd 𝐴) = 1 ∧ ¬ 2 ∥ 𝐵)) → ((𝐶 − 𝐴) gcd (𝐶 + 𝐴)) = 1) | |
| 25 | 23, 24 | syl 17 | . 2 ⊢ (𝜑 → ((𝐶 − 𝐴) gcd (𝐶 + 𝐴)) = 1) |
| 26 | 7, 25 | eqtrd 2764 | 1 ⊢ (𝜑 → ((𝐶 + 𝐴) gcd (𝐶 − 𝐴)) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 1c1 11069 + caddc 11071 − cmin 11405 ℕcn 12186 2c2 12241 ℕ0cn0 12442 ↑cexp 14026 ∥ cdvds 16222 gcd cgcd 16464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-gcd 16465 df-prm 16642 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |