Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem3 Structured version   Visualization version   GIF version

Theorem flt4lem3 42072
Description: Equivalent to pythagtriplem4 16787. Show that 𝐶 + 𝐴 and 𝐶𝐴 are coprime. (Contributed by SN, 22-Aug-2024.)
Hypotheses
Ref Expression
flt4lem3.a (𝜑𝐴 ∈ ℕ)
flt4lem3.b (𝜑𝐵 ∈ ℕ)
flt4lem3.c (𝜑𝐶 ∈ ℕ)
flt4lem3.1 (𝜑 → 2 ∥ 𝐴)
flt4lem3.2 (𝜑 → (𝐴 gcd 𝐶) = 1)
flt4lem3.3 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem3 (𝜑 → ((𝐶 + 𝐴) gcd (𝐶𝐴)) = 1)

Proof of Theorem flt4lem3
StepHypRef Expression
1 flt4lem3.c . . . . 5 (𝜑𝐶 ∈ ℕ)
21nnzd 12615 . . . 4 (𝜑𝐶 ∈ ℤ)
3 flt4lem3.a . . . . 5 (𝜑𝐴 ∈ ℕ)
43nnzd 12615 . . . 4 (𝜑𝐴 ∈ ℤ)
52, 4zaddcld 12700 . . 3 (𝜑 → (𝐶 + 𝐴) ∈ ℤ)
62, 4zsubcld 12701 . . 3 (𝜑 → (𝐶𝐴) ∈ ℤ)
75, 6gcdcomd 16488 . 2 (𝜑 → ((𝐶 + 𝐴) gcd (𝐶𝐴)) = ((𝐶𝐴) gcd (𝐶 + 𝐴)))
8 flt4lem3.b . . . 4 (𝜑𝐵 ∈ ℕ)
9 flt4lem3.1 . . . . 5 (𝜑 → 2 ∥ 𝐴)
10 flt4lem3.2 . . . . 5 (𝜑 → (𝐴 gcd 𝐶) = 1)
11 flt4lem3.3 . . . . 5 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
123, 8, 1, 9, 10, 11flt4lem2 42071 . . . 4 (𝜑 → ¬ 2 ∥ 𝐵)
13 2nn0 12519 . . . . . 6 2 ∈ ℕ0
1413a1i 11 . . . . 5 (𝜑 → 2 ∈ ℕ0)
153, 8, 1, 10, 11fltabcoprm 42066 . . . . 5 (𝜑 → (𝐴 gcd 𝐵) = 1)
163, 8, 1, 14, 11, 15fltbccoprm 42065 . . . 4 (𝜑 → (𝐵 gcd 𝐶) = 1)
178nnsqcld 14238 . . . . . . 7 (𝜑 → (𝐵↑2) ∈ ℕ)
1817nncnd 12258 . . . . . 6 (𝜑 → (𝐵↑2) ∈ ℂ)
193nnsqcld 14238 . . . . . . 7 (𝜑 → (𝐴↑2) ∈ ℕ)
2019nncnd 12258 . . . . . 6 (𝜑 → (𝐴↑2) ∈ ℂ)
2118, 20addcomd 11446 . . . . 5 (𝜑 → ((𝐵↑2) + (𝐴↑2)) = ((𝐴↑2) + (𝐵↑2)))
2221, 11eqtrd 2768 . . . 4 (𝜑 → ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2))
238, 3, 1, 12, 16, 22flt4lem1 42070 . . 3 (𝜑 → ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2) ∧ ((𝐵 gcd 𝐴) = 1 ∧ ¬ 2 ∥ 𝐵)))
24 pythagtriplem4 16787 . . 3 (((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2) ∧ ((𝐵 gcd 𝐴) = 1 ∧ ¬ 2 ∥ 𝐵)) → ((𝐶𝐴) gcd (𝐶 + 𝐴)) = 1)
2523, 24syl 17 . 2 (𝜑 → ((𝐶𝐴) gcd (𝐶 + 𝐴)) = 1)
267, 25eqtrd 2768 1 (𝜑 → ((𝐶 + 𝐴) gcd (𝐶𝐴)) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099   class class class wbr 5148  (class class class)co 7420  1c1 11139   + caddc 11141  cmin 11474  cn 12242  2c2 12297  0cn0 12502  cexp 14058  cdvds 16230   gcd cgcd 16468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-2o 8487  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-fz 13517  df-fl 13789  df-mod 13867  df-seq 13999  df-exp 14059  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-dvds 16231  df-gcd 16469  df-prm 16642
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator