![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem3 | Structured version Visualization version GIF version |
Description: Equivalent to pythagtriplem4 16757. Show that 𝐶 + 𝐴 and 𝐶 − 𝐴 are coprime. (Contributed by SN, 22-Aug-2024.) |
Ref | Expression |
---|---|
flt4lem3.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
flt4lem3.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
flt4lem3.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
flt4lem3.1 | ⊢ (𝜑 → 2 ∥ 𝐴) |
flt4lem3.2 | ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) |
flt4lem3.3 | ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) |
Ref | Expression |
---|---|
flt4lem3 | ⊢ (𝜑 → ((𝐶 + 𝐴) gcd (𝐶 − 𝐴)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flt4lem3.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
2 | 1 | nnzd 12584 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℤ) |
3 | flt4lem3.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
4 | 3 | nnzd 12584 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
5 | 2, 4 | zaddcld 12669 | . . 3 ⊢ (𝜑 → (𝐶 + 𝐴) ∈ ℤ) |
6 | 2, 4 | zsubcld 12670 | . . 3 ⊢ (𝜑 → (𝐶 − 𝐴) ∈ ℤ) |
7 | 5, 6 | gcdcomd 16458 | . 2 ⊢ (𝜑 → ((𝐶 + 𝐴) gcd (𝐶 − 𝐴)) = ((𝐶 − 𝐴) gcd (𝐶 + 𝐴))) |
8 | flt4lem3.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
9 | flt4lem3.1 | . . . . 5 ⊢ (𝜑 → 2 ∥ 𝐴) | |
10 | flt4lem3.2 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | |
11 | flt4lem3.3 | . . . . 5 ⊢ (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) | |
12 | 3, 8, 1, 9, 10, 11 | flt4lem2 41939 | . . . 4 ⊢ (𝜑 → ¬ 2 ∥ 𝐵) |
13 | 2nn0 12488 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
14 | 13 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℕ0) |
15 | 3, 8, 1, 10, 11 | fltabcoprm 41934 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐵) = 1) |
16 | 3, 8, 1, 14, 11, 15 | fltbccoprm 41933 | . . . 4 ⊢ (𝜑 → (𝐵 gcd 𝐶) = 1) |
17 | 8 | nnsqcld 14208 | . . . . . . 7 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
18 | 17 | nncnd 12227 | . . . . . 6 ⊢ (𝜑 → (𝐵↑2) ∈ ℂ) |
19 | 3 | nnsqcld 14208 | . . . . . . 7 ⊢ (𝜑 → (𝐴↑2) ∈ ℕ) |
20 | 19 | nncnd 12227 | . . . . . 6 ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
21 | 18, 20 | addcomd 11415 | . . . . 5 ⊢ (𝜑 → ((𝐵↑2) + (𝐴↑2)) = ((𝐴↑2) + (𝐵↑2))) |
22 | 21, 11 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2)) |
23 | 8, 3, 1, 12, 16, 22 | flt4lem1 41938 | . . 3 ⊢ (𝜑 → ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2) ∧ ((𝐵 gcd 𝐴) = 1 ∧ ¬ 2 ∥ 𝐵))) |
24 | pythagtriplem4 16757 | . . 3 ⊢ (((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2) ∧ ((𝐵 gcd 𝐴) = 1 ∧ ¬ 2 ∥ 𝐵)) → ((𝐶 − 𝐴) gcd (𝐶 + 𝐴)) = 1) | |
25 | 23, 24 | syl 17 | . 2 ⊢ (𝜑 → ((𝐶 − 𝐴) gcd (𝐶 + 𝐴)) = 1) |
26 | 7, 25 | eqtrd 2764 | 1 ⊢ (𝜑 → ((𝐶 + 𝐴) gcd (𝐶 − 𝐴)) = 1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5139 (class class class)co 7402 1c1 11108 + caddc 11110 − cmin 11443 ℕcn 12211 2c2 12266 ℕ0cn0 12471 ↑cexp 14028 ∥ cdvds 16200 gcd cgcd 16438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-inf 9435 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12976 df-fz 13486 df-fl 13758 df-mod 13836 df-seq 13968 df-exp 14029 df-cj 15048 df-re 15049 df-im 15050 df-sqrt 15184 df-abs 15185 df-dvds 16201 df-gcd 16439 df-prm 16612 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |