Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem3 Structured version   Visualization version   GIF version

Theorem flt4lem3 42636
Description: Equivalent to pythagtriplem4 16790. Show that 𝐶 + 𝐴 and 𝐶𝐴 are coprime. (Contributed by SN, 22-Aug-2024.)
Hypotheses
Ref Expression
flt4lem3.a (𝜑𝐴 ∈ ℕ)
flt4lem3.b (𝜑𝐵 ∈ ℕ)
flt4lem3.c (𝜑𝐶 ∈ ℕ)
flt4lem3.1 (𝜑 → 2 ∥ 𝐴)
flt4lem3.2 (𝜑 → (𝐴 gcd 𝐶) = 1)
flt4lem3.3 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem3 (𝜑 → ((𝐶 + 𝐴) gcd (𝐶𝐴)) = 1)

Proof of Theorem flt4lem3
StepHypRef Expression
1 flt4lem3.c . . . . 5 (𝜑𝐶 ∈ ℕ)
21nnzd 12556 . . . 4 (𝜑𝐶 ∈ ℤ)
3 flt4lem3.a . . . . 5 (𝜑𝐴 ∈ ℕ)
43nnzd 12556 . . . 4 (𝜑𝐴 ∈ ℤ)
52, 4zaddcld 12642 . . 3 (𝜑 → (𝐶 + 𝐴) ∈ ℤ)
62, 4zsubcld 12643 . . 3 (𝜑 → (𝐶𝐴) ∈ ℤ)
75, 6gcdcomd 16484 . 2 (𝜑 → ((𝐶 + 𝐴) gcd (𝐶𝐴)) = ((𝐶𝐴) gcd (𝐶 + 𝐴)))
8 flt4lem3.b . . . 4 (𝜑𝐵 ∈ ℕ)
9 flt4lem3.1 . . . . 5 (𝜑 → 2 ∥ 𝐴)
10 flt4lem3.2 . . . . 5 (𝜑 → (𝐴 gcd 𝐶) = 1)
11 flt4lem3.3 . . . . 5 (𝜑 → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2))
123, 8, 1, 9, 10, 11flt4lem2 42635 . . . 4 (𝜑 → ¬ 2 ∥ 𝐵)
13 2nn0 12459 . . . . . 6 2 ∈ ℕ0
1413a1i 11 . . . . 5 (𝜑 → 2 ∈ ℕ0)
153, 8, 1, 10, 11fltabcoprm 42630 . . . . 5 (𝜑 → (𝐴 gcd 𝐵) = 1)
163, 8, 1, 14, 11, 15fltbccoprm 42629 . . . 4 (𝜑 → (𝐵 gcd 𝐶) = 1)
178nnsqcld 14209 . . . . . . 7 (𝜑 → (𝐵↑2) ∈ ℕ)
1817nncnd 12202 . . . . . 6 (𝜑 → (𝐵↑2) ∈ ℂ)
193nnsqcld 14209 . . . . . . 7 (𝜑 → (𝐴↑2) ∈ ℕ)
2019nncnd 12202 . . . . . 6 (𝜑 → (𝐴↑2) ∈ ℂ)
2118, 20addcomd 11376 . . . . 5 (𝜑 → ((𝐵↑2) + (𝐴↑2)) = ((𝐴↑2) + (𝐵↑2)))
2221, 11eqtrd 2764 . . . 4 (𝜑 → ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2))
238, 3, 1, 12, 16, 22flt4lem1 42634 . . 3 (𝜑 → ((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2) ∧ ((𝐵 gcd 𝐴) = 1 ∧ ¬ 2 ∥ 𝐵)))
24 pythagtriplem4 16790 . . 3 (((𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐵↑2) + (𝐴↑2)) = (𝐶↑2) ∧ ((𝐵 gcd 𝐴) = 1 ∧ ¬ 2 ∥ 𝐵)) → ((𝐶𝐴) gcd (𝐶 + 𝐴)) = 1)
2523, 24syl 17 . 2 (𝜑 → ((𝐶𝐴) gcd (𝐶 + 𝐴)) = 1)
267, 25eqtrd 2764 1 (𝜑 → ((𝐶 + 𝐴) gcd (𝐶𝐴)) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  (class class class)co 7387  1c1 11069   + caddc 11071  cmin 11405  cn 12186  2c2 12241  0cn0 12442  cexp 14026  cdvds 16222   gcd cgcd 16464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator