| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gexid | Structured version Visualization version GIF version | ||
| Description: Any element to the power of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| Ref | Expression |
|---|---|
| gexcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
| gexcl.2 | ⊢ 𝐸 = (gEx‘𝐺) |
| gexid.3 | ⊢ · = (.g‘𝐺) |
| gexid.4 | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| gexid | ⊢ (𝐴 ∈ 𝑋 → (𝐸 · 𝐴) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7412 | . . . 4 ⊢ (𝐸 = 0 → (𝐸 · 𝐴) = (0 · 𝐴)) | |
| 2 | gexcl.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | gexid.4 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 4 | gexid.3 | . . . . 5 ⊢ · = (.g‘𝐺) | |
| 5 | 2, 3, 4 | mulg0 19057 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (0 · 𝐴) = 0 ) |
| 6 | 1, 5 | sylan9eqr 2792 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐸 = 0) → (𝐸 · 𝐴) = 0 ) |
| 7 | 6 | adantrr 717 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (𝐸 · 𝐴) = 0 ) |
| 8 | oveq1 7412 | . . . . . . 7 ⊢ (𝑦 = 𝐸 → (𝑦 · 𝑥) = (𝐸 · 𝑥)) | |
| 9 | 8 | eqeq1d 2737 | . . . . . 6 ⊢ (𝑦 = 𝐸 → ((𝑦 · 𝑥) = 0 ↔ (𝐸 · 𝑥) = 0 )) |
| 10 | 9 | ralbidv 3163 | . . . . 5 ⊢ (𝑦 = 𝐸 → (∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 ↔ ∀𝑥 ∈ 𝑋 (𝐸 · 𝑥) = 0 )) |
| 11 | 10 | elrab 3671 | . . . 4 ⊢ (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ↔ (𝐸 ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 (𝐸 · 𝑥) = 0 )) |
| 12 | 11 | simprbi 496 | . . 3 ⊢ (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } → ∀𝑥 ∈ 𝑋 (𝐸 · 𝑥) = 0 ) |
| 13 | oveq2 7413 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐸 · 𝑥) = (𝐸 · 𝐴)) | |
| 14 | 13 | eqeq1d 2737 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐸 · 𝑥) = 0 ↔ (𝐸 · 𝐴) = 0 )) |
| 15 | 14 | rspcva 3599 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝐸 · 𝑥) = 0 ) → (𝐸 · 𝐴) = 0 ) |
| 16 | 12, 15 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }) → (𝐸 · 𝐴) = 0 ) |
| 17 | elfvex 6914 | . . . 4 ⊢ (𝐴 ∈ (Base‘𝐺) → 𝐺 ∈ V) | |
| 18 | 17, 2 | eleq2s 2852 | . . 3 ⊢ (𝐴 ∈ 𝑋 → 𝐺 ∈ V) |
| 19 | gexcl.2 | . . . 4 ⊢ 𝐸 = (gEx‘𝐺) | |
| 20 | eqid 2735 | . . . 4 ⊢ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } | |
| 21 | 2, 4, 3, 19, 20 | gexlem1 19560 | . . 3 ⊢ (𝐺 ∈ V → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 })) |
| 22 | 18, 21 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑋 → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 })) |
| 23 | 7, 16, 22 | mpjaodan 960 | 1 ⊢ (𝐴 ∈ 𝑋 → (𝐸 · 𝐴) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 Vcvv 3459 ∅c0 4308 ‘cfv 6531 (class class class)co 7405 0cc0 11129 ℕcn 12240 Basecbs 17228 0gc0g 17453 .gcmg 19050 gExcgex 19506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-seq 14020 df-mulg 19051 df-gex 19510 |
| This theorem is referenced by: gexdvdsi 19564 gexod 19567 gex1 19572 pgpfac1lem3a 20059 |
| Copyright terms: Public domain | W3C validator |