MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexid Structured version   Visualization version   GIF version

Theorem gexid 19613
Description: Any element to the power of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1 𝑋 = (Base‘𝐺)
gexcl.2 𝐸 = (gEx‘𝐺)
gexid.3 · = (.g𝐺)
gexid.4 0 = (0g𝐺)
Assertion
Ref Expression
gexid (𝐴𝑋 → (𝐸 · 𝐴) = 0 )

Proof of Theorem gexid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7437 . . . 4 (𝐸 = 0 → (𝐸 · 𝐴) = (0 · 𝐴))
2 gexcl.1 . . . . 5 𝑋 = (Base‘𝐺)
3 gexid.4 . . . . 5 0 = (0g𝐺)
4 gexid.3 . . . . 5 · = (.g𝐺)
52, 3, 4mulg0 19104 . . . 4 (𝐴𝑋 → (0 · 𝐴) = 0 )
61, 5sylan9eqr 2796 . . 3 ((𝐴𝑋𝐸 = 0) → (𝐸 · 𝐴) = 0 )
76adantrr 717 . 2 ((𝐴𝑋 ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (𝐸 · 𝐴) = 0 )
8 oveq1 7437 . . . . . . 7 (𝑦 = 𝐸 → (𝑦 · 𝑥) = (𝐸 · 𝑥))
98eqeq1d 2736 . . . . . 6 (𝑦 = 𝐸 → ((𝑦 · 𝑥) = 0 ↔ (𝐸 · 𝑥) = 0 ))
109ralbidv 3175 . . . . 5 (𝑦 = 𝐸 → (∀𝑥𝑋 (𝑦 · 𝑥) = 0 ↔ ∀𝑥𝑋 (𝐸 · 𝑥) = 0 ))
1110elrab 3694 . . . 4 (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ↔ (𝐸 ∈ ℕ ∧ ∀𝑥𝑋 (𝐸 · 𝑥) = 0 ))
1211simprbi 496 . . 3 (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → ∀𝑥𝑋 (𝐸 · 𝑥) = 0 )
13 oveq2 7438 . . . . 5 (𝑥 = 𝐴 → (𝐸 · 𝑥) = (𝐸 · 𝐴))
1413eqeq1d 2736 . . . 4 (𝑥 = 𝐴 → ((𝐸 · 𝑥) = 0 ↔ (𝐸 · 𝐴) = 0 ))
1514rspcva 3619 . . 3 ((𝐴𝑋 ∧ ∀𝑥𝑋 (𝐸 · 𝑥) = 0 ) → (𝐸 · 𝐴) = 0 )
1612, 15sylan2 593 . 2 ((𝐴𝑋𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → (𝐸 · 𝐴) = 0 )
17 elfvex 6944 . . . 4 (𝐴 ∈ (Base‘𝐺) → 𝐺 ∈ V)
1817, 2eleq2s 2856 . . 3 (𝐴𝑋𝐺 ∈ V)
19 gexcl.2 . . . 4 𝐸 = (gEx‘𝐺)
20 eqid 2734 . . . 4 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
212, 4, 3, 19, 20gexlem1 19611 . . 3 (𝐺 ∈ V → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }))
2218, 21syl 17 . 2 (𝐴𝑋 → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }))
237, 16, 22mpjaodan 960 1 (𝐴𝑋 → (𝐸 · 𝐴) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1536  wcel 2105  wral 3058  {crab 3432  Vcvv 3477  c0 4338  cfv 6562  (class class class)co 7430  0cc0 11152  cn 12263  Basecbs 17244  0gc0g 17485  .gcmg 19097  gExcgex 19557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-seq 14039  df-mulg 19098  df-gex 19561
This theorem is referenced by:  gexdvdsi  19615  gexod  19618  gex1  19623  pgpfac1lem3a  20110
  Copyright terms: Public domain W3C validator