MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexid Structured version   Visualization version   GIF version

Theorem gexid 19599
Description: Any element to the power of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1 𝑋 = (Base‘𝐺)
gexcl.2 𝐸 = (gEx‘𝐺)
gexid.3 · = (.g𝐺)
gexid.4 0 = (0g𝐺)
Assertion
Ref Expression
gexid (𝐴𝑋 → (𝐸 · 𝐴) = 0 )

Proof of Theorem gexid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7438 . . . 4 (𝐸 = 0 → (𝐸 · 𝐴) = (0 · 𝐴))
2 gexcl.1 . . . . 5 𝑋 = (Base‘𝐺)
3 gexid.4 . . . . 5 0 = (0g𝐺)
4 gexid.3 . . . . 5 · = (.g𝐺)
52, 3, 4mulg0 19092 . . . 4 (𝐴𝑋 → (0 · 𝐴) = 0 )
61, 5sylan9eqr 2799 . . 3 ((𝐴𝑋𝐸 = 0) → (𝐸 · 𝐴) = 0 )
76adantrr 717 . 2 ((𝐴𝑋 ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (𝐸 · 𝐴) = 0 )
8 oveq1 7438 . . . . . . 7 (𝑦 = 𝐸 → (𝑦 · 𝑥) = (𝐸 · 𝑥))
98eqeq1d 2739 . . . . . 6 (𝑦 = 𝐸 → ((𝑦 · 𝑥) = 0 ↔ (𝐸 · 𝑥) = 0 ))
109ralbidv 3178 . . . . 5 (𝑦 = 𝐸 → (∀𝑥𝑋 (𝑦 · 𝑥) = 0 ↔ ∀𝑥𝑋 (𝐸 · 𝑥) = 0 ))
1110elrab 3692 . . . 4 (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ↔ (𝐸 ∈ ℕ ∧ ∀𝑥𝑋 (𝐸 · 𝑥) = 0 ))
1211simprbi 496 . . 3 (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → ∀𝑥𝑋 (𝐸 · 𝑥) = 0 )
13 oveq2 7439 . . . . 5 (𝑥 = 𝐴 → (𝐸 · 𝑥) = (𝐸 · 𝐴))
1413eqeq1d 2739 . . . 4 (𝑥 = 𝐴 → ((𝐸 · 𝑥) = 0 ↔ (𝐸 · 𝐴) = 0 ))
1514rspcva 3620 . . 3 ((𝐴𝑋 ∧ ∀𝑥𝑋 (𝐸 · 𝑥) = 0 ) → (𝐸 · 𝐴) = 0 )
1612, 15sylan2 593 . 2 ((𝐴𝑋𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → (𝐸 · 𝐴) = 0 )
17 elfvex 6944 . . . 4 (𝐴 ∈ (Base‘𝐺) → 𝐺 ∈ V)
1817, 2eleq2s 2859 . . 3 (𝐴𝑋𝐺 ∈ V)
19 gexcl.2 . . . 4 𝐸 = (gEx‘𝐺)
20 eqid 2737 . . . 4 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
212, 4, 3, 19, 20gexlem1 19597 . . 3 (𝐺 ∈ V → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }))
2218, 21syl 17 . 2 (𝐴𝑋 → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }))
237, 16, 22mpjaodan 961 1 (𝐴𝑋 → (𝐸 · 𝐴) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  wral 3061  {crab 3436  Vcvv 3480  c0 4333  cfv 6561  (class class class)co 7431  0cc0 11155  cn 12266  Basecbs 17247  0gc0g 17484  .gcmg 19085  gExcgex 19543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-mulg 19086  df-gex 19547
This theorem is referenced by:  gexdvdsi  19601  gexod  19604  gex1  19609  pgpfac1lem3a  20096
  Copyright terms: Public domain W3C validator