Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gexid | Structured version Visualization version GIF version |
Description: Any element to the power of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
gexcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
gexcl.2 | ⊢ 𝐸 = (gEx‘𝐺) |
gexid.3 | ⊢ · = (.g‘𝐺) |
gexid.4 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
gexid | ⊢ (𝐴 ∈ 𝑋 → (𝐸 · 𝐴) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7220 | . . . 4 ⊢ (𝐸 = 0 → (𝐸 · 𝐴) = (0 · 𝐴)) | |
2 | gexcl.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
3 | gexid.4 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
4 | gexid.3 | . . . . 5 ⊢ · = (.g‘𝐺) | |
5 | 2, 3, 4 | mulg0 18495 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (0 · 𝐴) = 0 ) |
6 | 1, 5 | sylan9eqr 2800 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐸 = 0) → (𝐸 · 𝐴) = 0 ) |
7 | 6 | adantrr 717 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (𝐸 · 𝐴) = 0 ) |
8 | oveq1 7220 | . . . . . . 7 ⊢ (𝑦 = 𝐸 → (𝑦 · 𝑥) = (𝐸 · 𝑥)) | |
9 | 8 | eqeq1d 2739 | . . . . . 6 ⊢ (𝑦 = 𝐸 → ((𝑦 · 𝑥) = 0 ↔ (𝐸 · 𝑥) = 0 )) |
10 | 9 | ralbidv 3118 | . . . . 5 ⊢ (𝑦 = 𝐸 → (∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 ↔ ∀𝑥 ∈ 𝑋 (𝐸 · 𝑥) = 0 )) |
11 | 10 | elrab 3602 | . . . 4 ⊢ (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ↔ (𝐸 ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 (𝐸 · 𝑥) = 0 )) |
12 | 11 | simprbi 500 | . . 3 ⊢ (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } → ∀𝑥 ∈ 𝑋 (𝐸 · 𝑥) = 0 ) |
13 | oveq2 7221 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐸 · 𝑥) = (𝐸 · 𝐴)) | |
14 | 13 | eqeq1d 2739 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐸 · 𝑥) = 0 ↔ (𝐸 · 𝐴) = 0 )) |
15 | 14 | rspcva 3535 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝐸 · 𝑥) = 0 ) → (𝐸 · 𝐴) = 0 ) |
16 | 12, 15 | sylan2 596 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }) → (𝐸 · 𝐴) = 0 ) |
17 | elfvex 6750 | . . . 4 ⊢ (𝐴 ∈ (Base‘𝐺) → 𝐺 ∈ V) | |
18 | 17, 2 | eleq2s 2856 | . . 3 ⊢ (𝐴 ∈ 𝑋 → 𝐺 ∈ V) |
19 | gexcl.2 | . . . 4 ⊢ 𝐸 = (gEx‘𝐺) | |
20 | eqid 2737 | . . . 4 ⊢ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } | |
21 | 2, 4, 3, 19, 20 | gexlem1 18968 | . . 3 ⊢ (𝐺 ∈ V → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 })) |
22 | 18, 21 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑋 → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 })) |
23 | 7, 16, 22 | mpjaodan 959 | 1 ⊢ (𝐴 ∈ 𝑋 → (𝐸 · 𝐴) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∨ wo 847 = wceq 1543 ∈ wcel 2110 ∀wral 3061 {crab 3065 Vcvv 3408 ∅c0 4237 ‘cfv 6380 (class class class)co 7213 0cc0 10729 ℕcn 11830 Basecbs 16760 0gc0g 16944 .gcmg 18488 gExcgex 18917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-seq 13575 df-mulg 18489 df-gex 18921 |
This theorem is referenced by: gexdvdsi 18972 gexod 18975 gex1 18980 pgpfac1lem3a 19463 |
Copyright terms: Public domain | W3C validator |