| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gexid | Structured version Visualization version GIF version | ||
| Description: Any element to the power of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| Ref | Expression |
|---|---|
| gexcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
| gexcl.2 | ⊢ 𝐸 = (gEx‘𝐺) |
| gexid.3 | ⊢ · = (.g‘𝐺) |
| gexid.4 | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| gexid | ⊢ (𝐴 ∈ 𝑋 → (𝐸 · 𝐴) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7394 | . . . 4 ⊢ (𝐸 = 0 → (𝐸 · 𝐴) = (0 · 𝐴)) | |
| 2 | gexcl.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | gexid.4 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 4 | gexid.3 | . . . . 5 ⊢ · = (.g‘𝐺) | |
| 5 | 2, 3, 4 | mulg0 19006 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (0 · 𝐴) = 0 ) |
| 6 | 1, 5 | sylan9eqr 2786 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐸 = 0) → (𝐸 · 𝐴) = 0 ) |
| 7 | 6 | adantrr 717 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (𝐸 · 𝐴) = 0 ) |
| 8 | oveq1 7394 | . . . . . . 7 ⊢ (𝑦 = 𝐸 → (𝑦 · 𝑥) = (𝐸 · 𝑥)) | |
| 9 | 8 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑦 = 𝐸 → ((𝑦 · 𝑥) = 0 ↔ (𝐸 · 𝑥) = 0 )) |
| 10 | 9 | ralbidv 3156 | . . . . 5 ⊢ (𝑦 = 𝐸 → (∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 ↔ ∀𝑥 ∈ 𝑋 (𝐸 · 𝑥) = 0 )) |
| 11 | 10 | elrab 3659 | . . . 4 ⊢ (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ↔ (𝐸 ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 (𝐸 · 𝑥) = 0 )) |
| 12 | 11 | simprbi 496 | . . 3 ⊢ (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } → ∀𝑥 ∈ 𝑋 (𝐸 · 𝑥) = 0 ) |
| 13 | oveq2 7395 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐸 · 𝑥) = (𝐸 · 𝐴)) | |
| 14 | 13 | eqeq1d 2731 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐸 · 𝑥) = 0 ↔ (𝐸 · 𝐴) = 0 )) |
| 15 | 14 | rspcva 3586 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝐸 · 𝑥) = 0 ) → (𝐸 · 𝐴) = 0 ) |
| 16 | 12, 15 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }) → (𝐸 · 𝐴) = 0 ) |
| 17 | elfvex 6896 | . . . 4 ⊢ (𝐴 ∈ (Base‘𝐺) → 𝐺 ∈ V) | |
| 18 | 17, 2 | eleq2s 2846 | . . 3 ⊢ (𝐴 ∈ 𝑋 → 𝐺 ∈ V) |
| 19 | gexcl.2 | . . . 4 ⊢ 𝐸 = (gEx‘𝐺) | |
| 20 | eqid 2729 | . . . 4 ⊢ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } | |
| 21 | 2, 4, 3, 19, 20 | gexlem1 19509 | . . 3 ⊢ (𝐺 ∈ V → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 })) |
| 22 | 18, 21 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑋 → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 })) |
| 23 | 7, 16, 22 | mpjaodan 960 | 1 ⊢ (𝐴 ∈ 𝑋 → (𝐸 · 𝐴) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 Vcvv 3447 ∅c0 4296 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ℕcn 12186 Basecbs 17179 0gc0g 17402 .gcmg 18999 gExcgex 19455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-mulg 19000 df-gex 19459 |
| This theorem is referenced by: gexdvdsi 19513 gexod 19516 gex1 19521 pgpfac1lem3a 20008 |
| Copyright terms: Public domain | W3C validator |