![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gexid | Structured version Visualization version GIF version |
Description: Any element to the power of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
gexcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
gexcl.2 | ⊢ 𝐸 = (gEx‘𝐺) |
gexid.3 | ⊢ · = (.g‘𝐺) |
gexid.4 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
gexid | ⊢ (𝐴 ∈ 𝑋 → (𝐸 · 𝐴) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6977 | . . . 4 ⊢ (𝐸 = 0 → (𝐸 · 𝐴) = (0 · 𝐴)) | |
2 | gexcl.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
3 | gexid.4 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
4 | gexid.3 | . . . . 5 ⊢ · = (.g‘𝐺) | |
5 | 2, 3, 4 | mulg0 18008 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (0 · 𝐴) = 0 ) |
6 | 1, 5 | sylan9eqr 2830 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐸 = 0) → (𝐸 · 𝐴) = 0 ) |
7 | 6 | adantrr 704 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (𝐸 · 𝐴) = 0 ) |
8 | oveq1 6977 | . . . . . . 7 ⊢ (𝑦 = 𝐸 → (𝑦 · 𝑥) = (𝐸 · 𝑥)) | |
9 | 8 | eqeq1d 2774 | . . . . . 6 ⊢ (𝑦 = 𝐸 → ((𝑦 · 𝑥) = 0 ↔ (𝐸 · 𝑥) = 0 )) |
10 | 9 | ralbidv 3141 | . . . . 5 ⊢ (𝑦 = 𝐸 → (∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 ↔ ∀𝑥 ∈ 𝑋 (𝐸 · 𝑥) = 0 )) |
11 | 10 | elrab 3589 | . . . 4 ⊢ (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ↔ (𝐸 ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 (𝐸 · 𝑥) = 0 )) |
12 | 11 | simprbi 489 | . . 3 ⊢ (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } → ∀𝑥 ∈ 𝑋 (𝐸 · 𝑥) = 0 ) |
13 | oveq2 6978 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐸 · 𝑥) = (𝐸 · 𝐴)) | |
14 | 13 | eqeq1d 2774 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐸 · 𝑥) = 0 ↔ (𝐸 · 𝐴) = 0 )) |
15 | 14 | rspcva 3527 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝐸 · 𝑥) = 0 ) → (𝐸 · 𝐴) = 0 ) |
16 | 12, 15 | sylan2 583 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }) → (𝐸 · 𝐴) = 0 ) |
17 | elfvex 6527 | . . . 4 ⊢ (𝐴 ∈ (Base‘𝐺) → 𝐺 ∈ V) | |
18 | 17, 2 | eleq2s 2878 | . . 3 ⊢ (𝐴 ∈ 𝑋 → 𝐺 ∈ V) |
19 | gexcl.2 | . . . 4 ⊢ 𝐸 = (gEx‘𝐺) | |
20 | eqid 2772 | . . . 4 ⊢ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } | |
21 | 2, 4, 3, 19, 20 | gexlem1 18455 | . . 3 ⊢ (𝐺 ∈ V → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 })) |
22 | 18, 21 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑋 → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 })) |
23 | 7, 16, 22 | mpjaodan 941 | 1 ⊢ (𝐴 ∈ 𝑋 → (𝐸 · 𝐴) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∨ wo 833 = wceq 1507 ∈ wcel 2048 ∀wral 3082 {crab 3086 Vcvv 3409 ∅c0 4173 ‘cfv 6182 (class class class)co 6970 0cc0 10327 ℕcn 11431 Basecbs 16329 0gc0g 16559 .gcmg 18001 gExcgex 18405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-sup 8693 df-inf 8694 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-n0 11701 df-z 11787 df-uz 12052 df-seq 13178 df-mulg 18002 df-gex 18409 |
This theorem is referenced by: gexdvdsi 18459 gexod 18462 gex1 18467 pgpfac1lem3a 18938 |
Copyright terms: Public domain | W3C validator |