| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gexid | Structured version Visualization version GIF version | ||
| Description: Any element to the power of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| Ref | Expression |
|---|---|
| gexcl.1 | ⊢ 𝑋 = (Base‘𝐺) |
| gexcl.2 | ⊢ 𝐸 = (gEx‘𝐺) |
| gexid.3 | ⊢ · = (.g‘𝐺) |
| gexid.4 | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| gexid | ⊢ (𝐴 ∈ 𝑋 → (𝐸 · 𝐴) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7353 | . . . 4 ⊢ (𝐸 = 0 → (𝐸 · 𝐴) = (0 · 𝐴)) | |
| 2 | gexcl.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | gexid.4 | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 4 | gexid.3 | . . . . 5 ⊢ · = (.g‘𝐺) | |
| 5 | 2, 3, 4 | mulg0 18984 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (0 · 𝐴) = 0 ) |
| 6 | 1, 5 | sylan9eqr 2788 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐸 = 0) → (𝐸 · 𝐴) = 0 ) |
| 7 | 6 | adantrr 717 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (𝐸 · 𝐴) = 0 ) |
| 8 | oveq1 7353 | . . . . . . 7 ⊢ (𝑦 = 𝐸 → (𝑦 · 𝑥) = (𝐸 · 𝑥)) | |
| 9 | 8 | eqeq1d 2733 | . . . . . 6 ⊢ (𝑦 = 𝐸 → ((𝑦 · 𝑥) = 0 ↔ (𝐸 · 𝑥) = 0 )) |
| 10 | 9 | ralbidv 3155 | . . . . 5 ⊢ (𝑦 = 𝐸 → (∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 ↔ ∀𝑥 ∈ 𝑋 (𝐸 · 𝑥) = 0 )) |
| 11 | 10 | elrab 3647 | . . . 4 ⊢ (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ↔ (𝐸 ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 (𝐸 · 𝑥) = 0 )) |
| 12 | 11 | simprbi 496 | . . 3 ⊢ (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } → ∀𝑥 ∈ 𝑋 (𝐸 · 𝑥) = 0 ) |
| 13 | oveq2 7354 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐸 · 𝑥) = (𝐸 · 𝐴)) | |
| 14 | 13 | eqeq1d 2733 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝐸 · 𝑥) = 0 ↔ (𝐸 · 𝐴) = 0 )) |
| 15 | 14 | rspcva 3575 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝐸 · 𝑥) = 0 ) → (𝐸 · 𝐴) = 0 ) |
| 16 | 12, 15 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }) → (𝐸 · 𝐴) = 0 ) |
| 17 | elfvex 6857 | . . . 4 ⊢ (𝐴 ∈ (Base‘𝐺) → 𝐺 ∈ V) | |
| 18 | 17, 2 | eleq2s 2849 | . . 3 ⊢ (𝐴 ∈ 𝑋 → 𝐺 ∈ V) |
| 19 | gexcl.2 | . . . 4 ⊢ 𝐸 = (gEx‘𝐺) | |
| 20 | eqid 2731 | . . . 4 ⊢ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } | |
| 21 | 2, 4, 3, 19, 20 | gexlem1 19489 | . . 3 ⊢ (𝐺 ∈ V → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 })) |
| 22 | 18, 21 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑋 → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 })) |
| 23 | 7, 16, 22 | mpjaodan 960 | 1 ⊢ (𝐴 ∈ 𝑋 → (𝐸 · 𝐴) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 Vcvv 3436 ∅c0 4283 ‘cfv 6481 (class class class)co 7346 0cc0 11003 ℕcn 12122 Basecbs 17117 0gc0g 17340 .gcmg 18977 gExcgex 19435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 df-uz 12730 df-seq 13906 df-mulg 18978 df-gex 19439 |
| This theorem is referenced by: gexdvdsi 19493 gexod 19496 gex1 19501 pgpfac1lem3a 19988 |
| Copyright terms: Public domain | W3C validator |