![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gexod | Structured version Visualization version GIF version |
Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
gexod.1 | ⊢ 𝑋 = (Base‘𝐺) |
gexod.2 | ⊢ 𝐸 = (gEx‘𝐺) |
gexod.3 | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
gexod | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∥ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gexod.1 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
2 | gexod.2 | . . . 4 ⊢ 𝐸 = (gEx‘𝐺) | |
3 | eqid 2778 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
4 | eqid 2778 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
5 | 1, 2, 3, 4 | gexid 18391 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝐸(.g‘𝐺)𝐴) = (0g‘𝐺)) |
6 | 5 | adantl 475 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐸(.g‘𝐺)𝐴) = (0g‘𝐺)) |
7 | 1, 2 | gexcl 18390 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝐸 ∈ ℕ0) |
8 | 7 | adantr 474 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐸 ∈ ℕ0) |
9 | 8 | nn0zd 11837 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐸 ∈ ℤ) |
10 | gexod.3 | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
11 | 1, 10, 3, 4 | oddvds 18361 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∈ ℤ) → ((𝑂‘𝐴) ∥ 𝐸 ↔ (𝐸(.g‘𝐺)𝐴) = (0g‘𝐺))) |
12 | 9, 11 | mpd3an3 1535 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) ∥ 𝐸 ↔ (𝐸(.g‘𝐺)𝐴) = (0g‘𝐺))) |
13 | 6, 12 | mpbird 249 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∥ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 class class class wbr 4888 ‘cfv 6137 (class class class)co 6924 ℕ0cn0 11647 ℤcz 11733 ∥ cdvds 15396 Basecbs 16266 0gc0g 16497 Grpcgrp 17820 .gcmg 17938 odcod 18339 gExcgex 18340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-en 8244 df-dom 8245 df-sdom 8246 df-sup 8638 df-inf 8639 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11036 df-nn 11380 df-2 11443 df-3 11444 df-n0 11648 df-z 11734 df-uz 11998 df-rp 12143 df-fz 12649 df-fl 12917 df-mod 12993 df-seq 13125 df-exp 13184 df-cj 14252 df-re 14253 df-im 14254 df-sqrt 14388 df-abs 14389 df-dvds 15397 df-0g 16499 df-mgm 17639 df-sgrp 17681 df-mnd 17692 df-grp 17823 df-minusg 17824 df-sbg 17825 df-mulg 17939 df-od 18343 df-gex 18344 |
This theorem is referenced by: gexnnod 18398 gexexlem 18652 gexex 18653 cyggex2 18695 |
Copyright terms: Public domain | W3C validator |