![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgnco | Structured version Visualization version GIF version |
Description: Multiplicativity of the permutation sign function. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
psgninv.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
psgninv.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
psgninv.p | ⊢ 𝑃 = (Base‘𝑆) |
Ref | Expression |
---|---|
psgnco | ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹 ∘ 𝐺)) = ((𝑁‘𝐹) · (𝑁‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgninv.s | . . . . 5 ⊢ 𝑆 = (SymGrp‘𝐷) | |
2 | psgninv.p | . . . . 5 ⊢ 𝑃 = (Base‘𝑆) | |
3 | eqid 2736 | . . . . 5 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
4 | 1, 2, 3 | symgov 19422 | . . . 4 ⊢ ((𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝐹(+g‘𝑆)𝐺) = (𝐹 ∘ 𝐺)) |
5 | 4 | 3adant1 1130 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝐹(+g‘𝑆)𝐺) = (𝐹 ∘ 𝐺)) |
6 | 5 | fveq2d 6915 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹(+g‘𝑆)𝐺)) = (𝑁‘(𝐹 ∘ 𝐺))) |
7 | psgninv.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
8 | eqid 2736 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
9 | 1, 7, 8 | psgnghm2 21623 | . . 3 ⊢ (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
10 | prex 5444 | . . . . 5 ⊢ {1, -1} ∈ V | |
11 | eqid 2736 | . . . . . . 7 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
12 | cnfldmul 21396 | . . . . . . 7 ⊢ · = (.r‘ℂfld) | |
13 | 11, 12 | mgpplusg 20162 | . . . . . 6 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
14 | 8, 13 | ressplusg 17342 | . . . . 5 ⊢ ({1, -1} ∈ V → · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
15 | 10, 14 | ax-mp 5 | . . . 4 ⊢ · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1})) |
16 | 2, 3, 15 | ghmlin 19258 | . . 3 ⊢ ((𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹(+g‘𝑆)𝐺)) = ((𝑁‘𝐹) · (𝑁‘𝐺))) |
17 | 9, 16 | syl3an1 1163 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹(+g‘𝑆)𝐺)) = ((𝑁‘𝐹) · (𝑁‘𝐺))) |
18 | 6, 17 | eqtr3d 2778 | 1 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹 ∘ 𝐺)) = ((𝑁‘𝐹) · (𝑁‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1538 ∈ wcel 2107 Vcvv 3479 {cpr 4634 ∘ ccom 5694 ‘cfv 6566 (class class class)co 7435 Fincfn 8990 1c1 11160 · cmul 11164 -cneg 11497 Basecbs 17251 ↾s cress 17280 +gcplusg 17304 GrpHom cghm 19249 SymGrpcsymg 19407 pmSgncpsgn 19528 mulGrpcmgp 20158 ℂfldccnfld 21388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-addf 11238 ax-mulf 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1510 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-ot 4641 df-uni 4914 df-int 4953 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-se 5643 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-isom 6575 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-tpos 8256 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-2o 8512 df-er 8750 df-map 8873 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-card 9983 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-6 12337 df-7 12338 df-8 12339 df-9 12340 df-n0 12531 df-xnn0 12604 df-z 12618 df-dec 12738 df-uz 12883 df-rp 13039 df-fz 13551 df-fzo 13698 df-seq 14046 df-exp 14106 df-hash 14373 df-word 14556 df-lsw 14604 df-concat 14612 df-s1 14637 df-substr 14682 df-pfx 14712 df-splice 14791 df-reverse 14800 df-s2 14890 df-struct 17187 df-sets 17204 df-slot 17222 df-ndx 17234 df-base 17252 df-ress 17281 df-plusg 17317 df-mulr 17318 df-starv 17319 df-tset 17323 df-ple 17324 df-ds 17326 df-unif 17327 df-0g 17494 df-gsum 17495 df-mre 17637 df-mrc 17638 df-acs 17640 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-mhm 18815 df-submnd 18816 df-efmnd 18901 df-grp 18973 df-minusg 18974 df-subg 19160 df-ghm 19250 df-gim 19296 df-oppg 19383 df-symg 19408 df-pmtr 19481 df-psgn 19530 df-cmn 19821 df-abl 19822 df-mgp 20159 df-rng 20177 df-ur 20206 df-ring 20259 df-cring 20260 df-oppr 20357 df-dvdsr 20380 df-unit 20381 df-invr 20411 df-dvr 20424 df-drng 20754 df-cnfld 21389 |
This theorem is referenced by: odpmco 33102 psgnfzto1st 33121 cyc3evpm 33166 mdetpmtr1 33797 madjusmdetlem4 33804 |
Copyright terms: Public domain | W3C validator |