| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnco | Structured version Visualization version GIF version | ||
| Description: Multiplicativity of the permutation sign function. (Contributed by SO, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| psgninv.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| psgninv.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
| psgninv.p | ⊢ 𝑃 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| psgnco | ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹 ∘ 𝐺)) = ((𝑁‘𝐹) · (𝑁‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgninv.s | . . . . 5 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 2 | psgninv.p | . . . . 5 ⊢ 𝑃 = (Base‘𝑆) | |
| 3 | eqid 2731 | . . . . 5 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 4 | 1, 2, 3 | symgov 19297 | . . . 4 ⊢ ((𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝐹(+g‘𝑆)𝐺) = (𝐹 ∘ 𝐺)) |
| 5 | 4 | 3adant1 1130 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝐹(+g‘𝑆)𝐺) = (𝐹 ∘ 𝐺)) |
| 6 | 5 | fveq2d 6826 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹(+g‘𝑆)𝐺)) = (𝑁‘(𝐹 ∘ 𝐺))) |
| 7 | psgninv.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
| 8 | eqid 2731 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
| 9 | 1, 7, 8 | psgnghm2 21519 | . . 3 ⊢ (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 10 | prex 5375 | . . . . 5 ⊢ {1, -1} ∈ V | |
| 11 | eqid 2731 | . . . . . . 7 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 12 | cnfldmul 21300 | . . . . . . 7 ⊢ · = (.r‘ℂfld) | |
| 13 | 11, 12 | mgpplusg 20063 | . . . . . 6 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
| 14 | 8, 13 | ressplusg 17195 | . . . . 5 ⊢ ({1, -1} ∈ V → · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 15 | 10, 14 | ax-mp 5 | . . . 4 ⊢ · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1})) |
| 16 | 2, 3, 15 | ghmlin 19134 | . . 3 ⊢ ((𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹(+g‘𝑆)𝐺)) = ((𝑁‘𝐹) · (𝑁‘𝐺))) |
| 17 | 9, 16 | syl3an1 1163 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹(+g‘𝑆)𝐺)) = ((𝑁‘𝐹) · (𝑁‘𝐺))) |
| 18 | 6, 17 | eqtr3d 2768 | 1 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹 ∘ 𝐺)) = ((𝑁‘𝐹) · (𝑁‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {cpr 4578 ∘ ccom 5620 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 1c1 11007 · cmul 11011 -cneg 11345 Basecbs 17120 ↾s cress 17141 +gcplusg 17161 GrpHom cghm 19125 SymGrpcsymg 19282 pmSgncpsgn 19402 mulGrpcmgp 20059 ℂfldccnfld 21292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-dec 12589 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14504 df-substr 14549 df-pfx 14579 df-splice 14657 df-reverse 14666 df-s2 14755 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-gsum 17346 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-efmnd 18777 df-grp 18849 df-minusg 18850 df-subg 19036 df-ghm 19126 df-gim 19172 df-oppg 19259 df-symg 19283 df-pmtr 19355 df-psgn 19404 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-cring 20155 df-oppr 20256 df-dvdsr 20276 df-unit 20277 df-invr 20307 df-dvr 20320 df-drng 20647 df-cnfld 21293 |
| This theorem is referenced by: odpmco 33053 psgnfzto1st 33072 cyc3evpm 33117 mdetpmtr1 33834 madjusmdetlem4 33841 |
| Copyright terms: Public domain | W3C validator |