MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnco Structured version   Visualization version   GIF version

Theorem psgnco 21498
Description: Multiplicativity of the permutation sign function. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
psgninv.s 𝑆 = (SymGrp‘𝐷)
psgninv.n 𝑁 = (pmSgn‘𝐷)
psgninv.p 𝑃 = (Base‘𝑆)
Assertion
Ref Expression
psgnco ((𝐷 ∈ Fin ∧ 𝐹𝑃𝐺𝑃) → (𝑁‘(𝐹𝐺)) = ((𝑁𝐹) · (𝑁𝐺)))

Proof of Theorem psgnco
StepHypRef Expression
1 psgninv.s . . . . 5 𝑆 = (SymGrp‘𝐷)
2 psgninv.p . . . . 5 𝑃 = (Base‘𝑆)
3 eqid 2730 . . . . 5 (+g𝑆) = (+g𝑆)
41, 2, 3symgov 19320 . . . 4 ((𝐹𝑃𝐺𝑃) → (𝐹(+g𝑆)𝐺) = (𝐹𝐺))
543adant1 1130 . . 3 ((𝐷 ∈ Fin ∧ 𝐹𝑃𝐺𝑃) → (𝐹(+g𝑆)𝐺) = (𝐹𝐺))
65fveq2d 6869 . 2 ((𝐷 ∈ Fin ∧ 𝐹𝑃𝐺𝑃) → (𝑁‘(𝐹(+g𝑆)𝐺)) = (𝑁‘(𝐹𝐺)))
7 psgninv.n . . . 4 𝑁 = (pmSgn‘𝐷)
8 eqid 2730 . . . 4 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
91, 7, 8psgnghm2 21496 . . 3 (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
10 prex 5400 . . . . 5 {1, -1} ∈ V
11 eqid 2730 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
12 cnfldmul 21278 . . . . . . 7 · = (.r‘ℂfld)
1311, 12mgpplusg 20059 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
148, 13ressplusg 17260 . . . . 5 ({1, -1} ∈ V → · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1})))
1510, 14ax-mp 5 . . . 4 · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1}))
162, 3, 15ghmlin 19159 . . 3 ((𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃𝐺𝑃) → (𝑁‘(𝐹(+g𝑆)𝐺)) = ((𝑁𝐹) · (𝑁𝐺)))
179, 16syl3an1 1163 . 2 ((𝐷 ∈ Fin ∧ 𝐹𝑃𝐺𝑃) → (𝑁‘(𝐹(+g𝑆)𝐺)) = ((𝑁𝐹) · (𝑁𝐺)))
186, 17eqtr3d 2767 1 ((𝐷 ∈ Fin ∧ 𝐹𝑃𝐺𝑃) → (𝑁‘(𝐹𝐺)) = ((𝑁𝐹) · (𝑁𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3455  {cpr 4599  ccom 5650  cfv 6519  (class class class)co 7394  Fincfn 8922  1c1 11087   · cmul 11091  -cneg 11424  Basecbs 17185  s cress 17206  +gcplusg 17226   GrpHom cghm 19150  SymGrpcsymg 19305  pmSgncpsgn 19425  mulGrpcmgp 20055  fldccnfld 21270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163  ax-addf 11165  ax-mulf 11166
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-ot 4606  df-uni 4880  df-int 4919  df-iun 4965  df-iin 4966  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-tpos 8214  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-er 8682  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-card 9910  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-div 11852  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-xnn0 12532  df-z 12546  df-dec 12666  df-uz 12810  df-rp 12966  df-fz 13482  df-fzo 13629  df-seq 13977  df-exp 14037  df-hash 14306  df-word 14489  df-lsw 14538  df-concat 14546  df-s1 14571  df-substr 14616  df-pfx 14646  df-splice 14725  df-reverse 14734  df-s2 14824  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-0g 17410  df-gsum 17411  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-mhm 18716  df-submnd 18717  df-efmnd 18802  df-grp 18874  df-minusg 18875  df-subg 19061  df-ghm 19151  df-gim 19197  df-oppg 19284  df-symg 19306  df-pmtr 19378  df-psgn 19427  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-cring 20151  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-dvr 20316  df-drng 20646  df-cnfld 21271
This theorem is referenced by:  odpmco  33051  psgnfzto1st  33070  cyc3evpm  33115  mdetpmtr1  33821  madjusmdetlem4  33828
  Copyright terms: Public domain W3C validator