![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgnco | Structured version Visualization version GIF version |
Description: Multiplicativity of the permutation sign function. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
psgninv.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
psgninv.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
psgninv.p | ⊢ 𝑃 = (Base‘𝑆) |
Ref | Expression |
---|---|
psgnco | ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹 ∘ 𝐺)) = ((𝑁‘𝐹) · (𝑁‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgninv.s | . . . . 5 ⊢ 𝑆 = (SymGrp‘𝐷) | |
2 | psgninv.p | . . . . 5 ⊢ 𝑃 = (Base‘𝑆) | |
3 | eqid 2740 | . . . . 5 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
4 | 1, 2, 3 | symgov 19427 | . . . 4 ⊢ ((𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝐹(+g‘𝑆)𝐺) = (𝐹 ∘ 𝐺)) |
5 | 4 | 3adant1 1130 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝐹(+g‘𝑆)𝐺) = (𝐹 ∘ 𝐺)) |
6 | 5 | fveq2d 6926 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹(+g‘𝑆)𝐺)) = (𝑁‘(𝐹 ∘ 𝐺))) |
7 | psgninv.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
8 | eqid 2740 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
9 | 1, 7, 8 | psgnghm2 21624 | . . 3 ⊢ (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
10 | prex 5452 | . . . . 5 ⊢ {1, -1} ∈ V | |
11 | eqid 2740 | . . . . . . 7 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
12 | cnfldmul 21397 | . . . . . . 7 ⊢ · = (.r‘ℂfld) | |
13 | 11, 12 | mgpplusg 20167 | . . . . . 6 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
14 | 8, 13 | ressplusg 17351 | . . . . 5 ⊢ ({1, -1} ∈ V → · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
15 | 10, 14 | ax-mp 5 | . . . 4 ⊢ · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1})) |
16 | 2, 3, 15 | ghmlin 19263 | . . 3 ⊢ ((𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹(+g‘𝑆)𝐺)) = ((𝑁‘𝐹) · (𝑁‘𝐺))) |
17 | 9, 16 | syl3an1 1163 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹(+g‘𝑆)𝐺)) = ((𝑁‘𝐹) · (𝑁‘𝐺))) |
18 | 6, 17 | eqtr3d 2782 | 1 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹 ∘ 𝐺)) = ((𝑁‘𝐹) · (𝑁‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {cpr 4650 ∘ ccom 5704 ‘cfv 6575 (class class class)co 7450 Fincfn 9005 1c1 11187 · cmul 11191 -cneg 11523 Basecbs 17260 ↾s cress 17289 +gcplusg 17313 GrpHom cghm 19254 SymGrpcsymg 19412 pmSgncpsgn 19533 mulGrpcmgp 20163 ℂfldccnfld 21389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-addf 11265 ax-mulf 11266 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-xor 1509 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-isom 6584 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-tpos 8269 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-2o 8525 df-er 8765 df-map 8888 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-card 10010 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-div 11950 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-7 12363 df-8 12364 df-9 12365 df-n0 12556 df-xnn0 12628 df-z 12642 df-dec 12761 df-uz 12906 df-rp 13060 df-fz 13570 df-fzo 13714 df-seq 14055 df-exp 14115 df-hash 14382 df-word 14565 df-lsw 14613 df-concat 14621 df-s1 14646 df-substr 14691 df-pfx 14721 df-splice 14800 df-reverse 14809 df-s2 14899 df-struct 17196 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-starv 17328 df-tset 17332 df-ple 17333 df-ds 17335 df-unif 17336 df-0g 17503 df-gsum 17504 df-mre 17646 df-mrc 17647 df-acs 17649 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-mhm 18820 df-submnd 18821 df-efmnd 18906 df-grp 18978 df-minusg 18979 df-subg 19165 df-ghm 19255 df-gim 19301 df-oppg 19388 df-symg 19413 df-pmtr 19486 df-psgn 19535 df-cmn 19826 df-abl 19827 df-mgp 20164 df-rng 20182 df-ur 20211 df-ring 20264 df-cring 20265 df-oppr 20362 df-dvdsr 20385 df-unit 20386 df-invr 20416 df-dvr 20429 df-drng 20755 df-cnfld 21390 |
This theorem is referenced by: odpmco 33081 psgnfzto1st 33100 cyc3evpm 33145 mdetpmtr1 33771 madjusmdetlem4 33778 |
Copyright terms: Public domain | W3C validator |