| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnco | Structured version Visualization version GIF version | ||
| Description: Multiplicativity of the permutation sign function. (Contributed by SO, 9-Jul-2018.) |
| Ref | Expression |
|---|---|
| psgninv.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| psgninv.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
| psgninv.p | ⊢ 𝑃 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| psgnco | ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹 ∘ 𝐺)) = ((𝑁‘𝐹) · (𝑁‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgninv.s | . . . . 5 ⊢ 𝑆 = (SymGrp‘𝐷) | |
| 2 | psgninv.p | . . . . 5 ⊢ 𝑃 = (Base‘𝑆) | |
| 3 | eqid 2734 | . . . . 5 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 4 | 1, 2, 3 | symgov 19368 | . . . 4 ⊢ ((𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝐹(+g‘𝑆)𝐺) = (𝐹 ∘ 𝐺)) |
| 5 | 4 | 3adant1 1130 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝐹(+g‘𝑆)𝐺) = (𝐹 ∘ 𝐺)) |
| 6 | 5 | fveq2d 6889 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹(+g‘𝑆)𝐺)) = (𝑁‘(𝐹 ∘ 𝐺))) |
| 7 | psgninv.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
| 8 | eqid 2734 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
| 9 | 1, 7, 8 | psgnghm2 21552 | . . 3 ⊢ (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 10 | prex 5417 | . . . . 5 ⊢ {1, -1} ∈ V | |
| 11 | eqid 2734 | . . . . . . 7 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
| 12 | cnfldmul 21333 | . . . . . . 7 ⊢ · = (.r‘ℂfld) | |
| 13 | 11, 12 | mgpplusg 20108 | . . . . . 6 ⊢ · = (+g‘(mulGrp‘ℂfld)) |
| 14 | 8, 13 | ressplusg 17306 | . . . . 5 ⊢ ({1, -1} ∈ V → · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
| 15 | 10, 14 | ax-mp 5 | . . . 4 ⊢ · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1})) |
| 16 | 2, 3, 15 | ghmlin 19207 | . . 3 ⊢ ((𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹(+g‘𝑆)𝐺)) = ((𝑁‘𝐹) · (𝑁‘𝐺))) |
| 17 | 9, 16 | syl3an1 1163 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹(+g‘𝑆)𝐺)) = ((𝑁‘𝐹) · (𝑁‘𝐺))) |
| 18 | 6, 17 | eqtr3d 2771 | 1 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃 ∧ 𝐺 ∈ 𝑃) → (𝑁‘(𝐹 ∘ 𝐺)) = ((𝑁‘𝐹) · (𝑁‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 Vcvv 3463 {cpr 4608 ∘ ccom 5669 ‘cfv 6540 (class class class)co 7412 Fincfn 8966 1c1 11137 · cmul 11141 -cneg 11474 Basecbs 17228 ↾s cress 17251 +gcplusg 17272 GrpHom cghm 19198 SymGrpcsymg 19353 pmSgncpsgn 19474 mulGrpcmgp 20104 ℂfldccnfld 21325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-addf 11215 ax-mulf 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1511 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-9 12317 df-n0 12509 df-xnn0 12582 df-z 12596 df-dec 12716 df-uz 12860 df-rp 13016 df-fz 13529 df-fzo 13676 df-seq 14024 df-exp 14084 df-hash 14351 df-word 14534 df-lsw 14582 df-concat 14590 df-s1 14615 df-substr 14660 df-pfx 14690 df-splice 14769 df-reverse 14778 df-s2 14868 df-struct 17165 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-plusg 17285 df-mulr 17286 df-starv 17287 df-tset 17291 df-ple 17292 df-ds 17294 df-unif 17295 df-0g 17456 df-gsum 17457 df-mre 17599 df-mrc 17600 df-acs 17602 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-mhm 18764 df-submnd 18765 df-efmnd 18850 df-grp 18922 df-minusg 18923 df-subg 19109 df-ghm 19199 df-gim 19245 df-oppg 19332 df-symg 19354 df-pmtr 19427 df-psgn 19476 df-cmn 19767 df-abl 19768 df-mgp 20105 df-rng 20117 df-ur 20146 df-ring 20199 df-cring 20200 df-oppr 20301 df-dvdsr 20324 df-unit 20325 df-invr 20355 df-dvr 20368 df-drng 20698 df-cnfld 21326 |
| This theorem is referenced by: odpmco 33036 psgnfzto1st 33055 cyc3evpm 33100 mdetpmtr1 33756 madjusmdetlem4 33763 |
| Copyright terms: Public domain | W3C validator |