MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnco Structured version   Visualization version   GIF version

Theorem psgnco 20402
Description: Multiplicativity of the permutation sign function. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
psgninv.s 𝑆 = (SymGrp‘𝐷)
psgninv.n 𝑁 = (pmSgn‘𝐷)
psgninv.p 𝑃 = (Base‘𝑆)
Assertion
Ref Expression
psgnco ((𝐷 ∈ Fin ∧ 𝐹𝑃𝐺𝑃) → (𝑁‘(𝐹𝐺)) = ((𝑁𝐹) · (𝑁𝐺)))

Proof of Theorem psgnco
StepHypRef Expression
1 psgninv.s . . . . 5 𝑆 = (SymGrp‘𝐷)
2 psgninv.p . . . . 5 𝑃 = (Base‘𝑆)
3 eqid 2739 . . . . 5 (+g𝑆) = (+g𝑆)
41, 2, 3symgov 18633 . . . 4 ((𝐹𝑃𝐺𝑃) → (𝐹(+g𝑆)𝐺) = (𝐹𝐺))
543adant1 1131 . . 3 ((𝐷 ∈ Fin ∧ 𝐹𝑃𝐺𝑃) → (𝐹(+g𝑆)𝐺) = (𝐹𝐺))
65fveq2d 6681 . 2 ((𝐷 ∈ Fin ∧ 𝐹𝑃𝐺𝑃) → (𝑁‘(𝐹(+g𝑆)𝐺)) = (𝑁‘(𝐹𝐺)))
7 psgninv.n . . . 4 𝑁 = (pmSgn‘𝐷)
8 eqid 2739 . . . 4 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
91, 7, 8psgnghm2 20400 . . 3 (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
10 prex 5300 . . . . 5 {1, -1} ∈ V
11 eqid 2739 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
12 cnfldmul 20226 . . . . . . 7 · = (.r‘ℂfld)
1311, 12mgpplusg 19365 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
148, 13ressplusg 16718 . . . . 5 ({1, -1} ∈ V → · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1})))
1510, 14ax-mp 5 . . . 4 · = (+g‘((mulGrp‘ℂfld) ↾s {1, -1}))
162, 3, 15ghmlin 18484 . . 3 ((𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃𝐺𝑃) → (𝑁‘(𝐹(+g𝑆)𝐺)) = ((𝑁𝐹) · (𝑁𝐺)))
179, 16syl3an1 1164 . 2 ((𝐷 ∈ Fin ∧ 𝐹𝑃𝐺𝑃) → (𝑁‘(𝐹(+g𝑆)𝐺)) = ((𝑁𝐹) · (𝑁𝐺)))
186, 17eqtr3d 2776 1 ((𝐷 ∈ Fin ∧ 𝐹𝑃𝐺𝑃) → (𝑁‘(𝐹𝐺)) = ((𝑁𝐹) · (𝑁𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2114  Vcvv 3399  {cpr 4519  ccom 5530  cfv 6340  (class class class)co 7173  Fincfn 8558  1c1 10619   · cmul 10623  -cneg 10952  Basecbs 16589  s cress 16590  +gcplusg 16671   GrpHom cghm 18476  SymGrpcsymg 18616  pmSgncpsgn 18738  mulGrpcmgp 19361  fldccnfld 20220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-addf 10697  ax-mulf 10698
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-xor 1507  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-ot 4526  df-uni 4798  df-int 4838  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-se 5485  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-1st 7717  df-2nd 7718  df-tpos 7924  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-2o 8135  df-er 8323  df-map 8442  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-card 9444  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379  df-nn 11720  df-2 11782  df-3 11783  df-4 11784  df-5 11785  df-6 11786  df-7 11787  df-8 11788  df-9 11789  df-n0 11980  df-xnn0 12052  df-z 12066  df-dec 12183  df-uz 12328  df-rp 12476  df-fz 12985  df-fzo 13128  df-seq 13464  df-exp 13525  df-hash 13786  df-word 13959  df-lsw 14007  df-concat 14015  df-s1 14042  df-substr 14095  df-pfx 14125  df-splice 14204  df-reverse 14213  df-s2 14302  df-struct 16591  df-ndx 16592  df-slot 16593  df-base 16595  df-sets 16596  df-ress 16597  df-plusg 16684  df-mulr 16685  df-starv 16686  df-tset 16690  df-ple 16691  df-ds 16693  df-unif 16694  df-0g 16821  df-gsum 16822  df-mre 16963  df-mrc 16964  df-acs 16966  df-mgm 17971  df-sgrp 18020  df-mnd 18031  df-mhm 18075  df-submnd 18076  df-efmnd 18153  df-grp 18225  df-minusg 18226  df-subg 18397  df-ghm 18477  df-gim 18520  df-oppg 18595  df-symg 18617  df-pmtr 18691  df-psgn 18740  df-cmn 19029  df-abl 19030  df-mgp 19362  df-ur 19374  df-ring 19421  df-cring 19422  df-oppr 19498  df-dvdsr 19516  df-unit 19517  df-invr 19547  df-dvr 19558  df-drng 19626  df-cnfld 20221
This theorem is referenced by:  odpmco  30935  psgnfzto1st  30952  cyc3evpm  30997  mdetpmtr1  31348  madjusmdetlem4  31355
  Copyright terms: Public domain W3C validator