Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmaplem1 Structured version   Visualization version   GIF version

Theorem hdmaplem1 39773
Description: Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015.)
Hypotheses
Ref Expression
hdmaplem1.v 𝑉 = (Base‘𝑊)
hdmaplem1.n 𝑁 = (LSpan‘𝑊)
hdmaplem1.w (𝜑𝑊 ∈ LMod)
hdmaplem1.z (𝜑𝑍𝑉)
hdmaplem1.j (𝜑 → ¬ 𝑍 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})))
hdmaplem1.x (𝜑𝑋𝑉)
Assertion
Ref Expression
hdmaplem1 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑋}))

Proof of Theorem hdmaplem1
StepHypRef Expression
1 hdmaplem1.v . 2 𝑉 = (Base‘𝑊)
2 hdmaplem1.n . 2 𝑁 = (LSpan‘𝑊)
3 hdmaplem1.w . 2 (𝜑𝑊 ∈ LMod)
4 hdmaplem1.z . 2 (𝜑𝑍𝑉)
5 hdmaplem1.x . 2 (𝜑𝑋𝑉)
6 hdmaplem1.j . . 3 (𝜑 → ¬ 𝑍 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})))
7 elun1 4115 . . 3 (𝑍 ∈ (𝑁‘{𝑋}) → 𝑍 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌})))
86, 7nsyl 140 . 2 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋}))
91, 2, 3, 4, 5, 8lspsnne2 20370 1 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wcel 2110  wne 2945  cun 3890  {csn 4567  cfv 6431  Basecbs 16902  LModclmod 20113  LSpanclspn 20223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10920  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-mulrcl 10927  ax-mulcom 10928  ax-addass 10929  ax-mulass 10930  ax-distr 10931  ax-i2m1 10932  ax-1ne0 10933  ax-1rid 10934  ax-rnegex 10935  ax-rrecex 10936  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939  ax-pre-ltadd 10940  ax-pre-mulgt0 10941
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7702  df-1st 7818  df-2nd 7819  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226  df-er 8473  df-en 8709  df-dom 8710  df-sdom 8711  df-pnf 11004  df-mnf 11005  df-xr 11006  df-ltxr 11007  df-le 11008  df-sub 11199  df-neg 11200  df-nn 11966  df-2 12028  df-sets 16855  df-slot 16873  df-ndx 16885  df-base 16903  df-plusg 16965  df-0g 17142  df-mgm 18316  df-sgrp 18365  df-mnd 18376  df-grp 18570  df-minusg 18571  df-sbg 18572  df-mgp 19711  df-ur 19728  df-ring 19775  df-lmod 20115  df-lss 20184  df-lsp 20224
This theorem is referenced by:  hdmapeveclem  39836
  Copyright terms: Public domain W3C validator