| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapeveclem | Structured version Visualization version GIF version | ||
| Description: Lemma for hdmapevec 41944. TODO: combine with hdmapevec 41944 if it shortens overall. (Contributed by NM, 16-May-2015.) |
| Ref | Expression |
|---|---|
| hdmapevec.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmapevec.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
| hdmapevec.j | ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) |
| hdmapevec.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hdmapevec.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmapevec.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmapevec.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmapevec.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmapevec.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmapevec.d | ⊢ 𝐷 = (Base‘𝐶) |
| hdmapevec.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
| hdmapevec.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| hdmapevec.ne | ⊢ (𝜑 → ¬ 𝑋 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝐸}))) |
| Ref | Expression |
|---|---|
| hdmapeveclem | ⊢ (𝜑 → (𝑆‘𝐸) = (𝐽‘𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmapevec.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmapevec.e | . . 3 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
| 3 | hdmapevec.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | hdmapevec.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 5 | hdmapevec.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 6 | hdmapevec.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 7 | hdmapevec.d | . . 3 ⊢ 𝐷 = (Base‘𝐶) | |
| 8 | hdmapevec.j | . . 3 ⊢ 𝐽 = ((HVMap‘𝐾)‘𝑊) | |
| 9 | hdmapevec.i | . . 3 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
| 10 | hdmapevec.s | . . 3 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 11 | hdmapevec.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 12 | eqid 2733 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 13 | eqid 2733 | . . . . 5 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 14 | eqid 2733 | . . . . 5 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 15 | 1, 12, 13, 3, 4, 14, 2, 11 | dvheveccl 41221 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
| 16 | 15 | eldifad 3911 | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| 17 | hdmapevec.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 18 | hdmapevec.ne | . . 3 ⊢ (𝜑 → ¬ 𝑋 ∈ ((𝑁‘{𝐸}) ∪ (𝑁‘{𝐸}))) | |
| 19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18 | hdmapval2 41941 | . 2 ⊢ (𝜑 → (𝑆‘𝐸) = (𝐼‘〈𝑋, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑋〉), 𝐸〉)) |
| 20 | eqid 2733 | . . 3 ⊢ (LSpan‘𝐶) = (LSpan‘𝐶) | |
| 21 | eqid 2733 | . . 3 ⊢ ((mapd‘𝐾)‘𝑊) = ((mapd‘𝐾)‘𝑊) | |
| 22 | eqid 2733 | . . . . 5 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
| 23 | 1, 3, 4, 14, 6, 7, 22, 8, 11, 15 | hvmapcl2 41875 | . . . 4 ⊢ (𝜑 → (𝐽‘𝐸) ∈ (𝐷 ∖ {(0g‘𝐶)})) |
| 24 | 23 | eldifad 3911 | . . 3 ⊢ (𝜑 → (𝐽‘𝐸) ∈ 𝐷) |
| 25 | 1, 3, 4, 14, 5, 6, 20, 21, 8, 11, 15 | mapdhvmap 41878 | . . 3 ⊢ (𝜑 → (((mapd‘𝐾)‘𝑊)‘(𝑁‘{𝐸})) = ((LSpan‘𝐶)‘{(𝐽‘𝐸)})) |
| 26 | 1, 3, 11 | dvhlmod 41219 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 27 | 4, 5, 26, 17, 18, 16 | hdmaplem1 41880 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝐸})) |
| 28 | 27 | necomd 2985 | . . 3 ⊢ (𝜑 → (𝑁‘{𝐸}) ≠ (𝑁‘{𝑋})) |
| 29 | 4, 5, 26, 17, 18, 16, 14 | hdmaplem3 41882 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
| 30 | eqidd 2734 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑋〉) = (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑋〉)) | |
| 31 | 1, 3, 4, 14, 5, 6, 7, 20, 21, 9, 11, 24, 25, 28, 15, 29, 30 | hdmap1eq2 41914 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, (𝐼‘〈𝐸, (𝐽‘𝐸), 𝑋〉), 𝐸〉) = (𝐽‘𝐸)) |
| 32 | 19, 31 | eqtrd 2768 | 1 ⊢ (𝜑 → (𝑆‘𝐸) = (𝐽‘𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∪ cun 3897 {csn 4577 〈cop 4583 〈cotp 4585 I cid 5515 ↾ cres 5623 ‘cfv 6489 Basecbs 17130 0gc0g 17353 LSpanclspn 20914 HLchlt 39459 LHypclh 40093 LTrncltrn 40210 DVecHcdvh 41187 LCDualclcd 41695 mapdcmpd 41733 HVMapchvm 41865 HDMap1chdma1 41900 HDMapchdma 41901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-riotaBAD 39062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-undef 8212 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-n0 12392 df-z 12479 df-uz 12743 df-fz 13418 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-sca 17187 df-vsca 17188 df-0g 17355 df-mre 17498 df-mrc 17499 df-acs 17501 df-proset 18210 df-poset 18229 df-plt 18244 df-lub 18260 df-glb 18261 df-join 18262 df-meet 18263 df-p0 18339 df-p1 18340 df-lat 18348 df-clat 18415 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-submnd 18702 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19046 df-cntz 19239 df-oppg 19268 df-lsm 19558 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-oppr 20265 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-dvr 20329 df-nzr 20438 df-rlreg 20619 df-domn 20620 df-drng 20656 df-lmod 20805 df-lss 20875 df-lsp 20915 df-lvec 21047 df-lsatoms 39085 df-lshyp 39086 df-lcv 39128 df-lfl 39167 df-lkr 39195 df-ldual 39233 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-llines 39607 df-lplanes 39608 df-lvols 39609 df-lines 39610 df-psubsp 39612 df-pmap 39613 df-padd 39905 df-lhyp 40097 df-laut 40098 df-ldil 40213 df-ltrn 40214 df-trl 40268 df-tgrp 40852 df-tendo 40864 df-edring 40866 df-dveca 41112 df-disoa 41138 df-dvech 41188 df-dib 41248 df-dic 41282 df-dih 41338 df-doch 41457 df-djh 41504 df-lcdual 41696 df-mapd 41734 df-hvmap 41866 df-hdmap1 41902 df-hdmap 41903 |
| This theorem is referenced by: hdmapevec 41944 |
| Copyright terms: Public domain | W3C validator |