MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswrdsymb Structured version   Visualization version   GIF version

Theorem iswrdsymb 13619
Description: An arbitrary word is a word over an alphabet if all of its symbols belong to the alphabet. (Contributed by AV, 23-Jan-2021.)
Assertion
Ref Expression
iswrdsymb ((𝑊 ∈ Word V ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ∈ 𝑉) → 𝑊 ∈ Word 𝑉)
Distinct variable groups:   𝑖,𝑉   𝑖,𝑊

Proof of Theorem iswrdsymb
StepHypRef Expression
1 wrdfn 13614 . . . 4 (𝑊 ∈ Word V → 𝑊 Fn (0..^(♯‘𝑊)))
21anim1i 608 . . 3 ((𝑊 ∈ Word V ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ∈ 𝑉) → (𝑊 Fn (0..^(♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ∈ 𝑉))
3 ffnfv 6652 . . 3 (𝑊:(0..^(♯‘𝑊))⟶𝑉 ↔ (𝑊 Fn (0..^(♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ∈ 𝑉))
42, 3sylibr 226 . 2 ((𝑊 ∈ Word V ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ∈ 𝑉) → 𝑊:(0..^(♯‘𝑊))⟶𝑉)
5 iswrdi 13603 . 2 (𝑊:(0..^(♯‘𝑊))⟶𝑉𝑊 ∈ Word 𝑉)
64, 5syl 17 1 ((𝑊 ∈ Word V ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ∈ 𝑉) → 𝑊 ∈ Word 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2107  wral 3090  Vcvv 3398   Fn wfn 6130  wf 6131  cfv 6135  (class class class)co 6922  0cc0 10272  ..^cfzo 12784  chash 13435  Word cword 13599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-fzo 12785  df-hash 13436  df-word 13600
This theorem is referenced by:  ccatalpha  13683  wlkdlem3  27035
  Copyright terms: Public domain W3C validator