Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itgresr | Structured version Visualization version GIF version |
Description: The domain of an integral only matters in its intersection with ℝ. (Contributed by Mario Carneiro, 29-Jun-2014.) |
Ref | Expression |
---|---|
itgresr | ⊢ ∫𝐴𝐵 d𝑥 = ∫(𝐴 ∩ ℝ)𝐵 d𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 488 | . . . . . . . . . 10 ⊢ ((𝑘 ∈ (0...3) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
2 | 1 | biantrud 535 | . . . . . . . . 9 ⊢ ((𝑘 ∈ (0...3) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ℝ))) |
3 | elin 3859 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝐴 ∩ ℝ) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ℝ)) | |
4 | 2, 3 | bitr4di 292 | . . . . . . . 8 ⊢ ((𝑘 ∈ (0...3) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∩ ℝ))) |
5 | 4 | anbi1d 633 | . . . . . . 7 ⊢ ((𝑘 ∈ (0...3) ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) ↔ (𝑥 ∈ (𝐴 ∩ ℝ) ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))))) |
6 | 5 | ifbid 4437 | . . . . . 6 ⊢ ((𝑘 ∈ (0...3) ∧ 𝑥 ∈ ℝ) → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑥 ∈ (𝐴 ∩ ℝ) ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) |
7 | 6 | mpteq2dva 5125 | . . . . 5 ⊢ (𝑘 ∈ (0...3) → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ (𝐴 ∩ ℝ) ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) |
8 | 7 | fveq2d 6678 | . . . 4 ⊢ (𝑘 ∈ (0...3) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ (𝐴 ∩ ℝ) ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) |
9 | 8 | oveq2d 7186 | . . 3 ⊢ (𝑘 ∈ (0...3) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ (𝐴 ∩ ℝ) ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))) |
10 | 9 | sumeq2i 15149 | . 2 ⊢ Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ (𝐴 ∩ ℝ) ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) |
11 | eqid 2738 | . . 3 ⊢ (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))) | |
12 | 11 | dfitg 24522 | . 2 ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) |
13 | 11 | dfitg 24522 | . 2 ⊢ ∫(𝐴 ∩ ℝ)𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ (𝐴 ∩ ℝ) ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) |
14 | 10, 12, 13 | 3eqtr4i 2771 | 1 ⊢ ∫𝐴𝐵 d𝑥 = ∫(𝐴 ∩ ℝ)𝐵 d𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∩ cin 3842 ifcif 4414 class class class wbr 5030 ↦ cmpt 5110 ‘cfv 6339 (class class class)co 7170 ℝcr 10614 0cc0 10615 ici 10617 · cmul 10620 ≤ cle 10754 / cdiv 11375 3c3 11772 ...cfz 12981 ↑cexp 13521 ℜcre 14546 Σcsu 15135 ∫2citg2 24368 ∫citg 24370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-n0 11977 df-z 12063 df-uz 12325 df-fz 12982 df-seq 13461 df-sum 15136 df-itg 24375 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |