Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  leceifl Structured version   Visualization version   GIF version

Theorem leceifl 35922
Description: Theorem to move the floor function across a non-strict inequality. (Contributed by Brendan Leahy, 25-Oct-2017.)
Assertion
Ref Expression
leceifl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(⌊‘-𝐴) ≤ 𝐵𝐴 ≤ (⌊‘𝐵)))

Proof of Theorem leceifl
StepHypRef Expression
1 ltflcei 35921 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((⌊‘𝐵) < 𝐴𝐵 < -(⌊‘-𝐴)))
21ancoms 460 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((⌊‘𝐵) < 𝐴𝐵 < -(⌊‘-𝐴)))
32notbid 318 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (⌊‘𝐵) < 𝐴 ↔ ¬ 𝐵 < -(⌊‘-𝐴)))
4 reflcl 13626 . . 3 (𝐵 ∈ ℝ → (⌊‘𝐵) ∈ ℝ)
5 lenlt 11163 . . 3 ((𝐴 ∈ ℝ ∧ (⌊‘𝐵) ∈ ℝ) → (𝐴 ≤ (⌊‘𝐵) ↔ ¬ (⌊‘𝐵) < 𝐴))
64, 5sylan2 594 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ (⌊‘𝐵) ↔ ¬ (⌊‘𝐵) < 𝐴))
7 ceicl 13671 . . . 4 (𝐴 ∈ ℝ → -(⌊‘-𝐴) ∈ ℤ)
87zred 12536 . . 3 (𝐴 ∈ ℝ → -(⌊‘-𝐴) ∈ ℝ)
9 lenlt 11163 . . 3 ((-(⌊‘-𝐴) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(⌊‘-𝐴) ≤ 𝐵 ↔ ¬ 𝐵 < -(⌊‘-𝐴)))
108, 9sylan 581 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(⌊‘-𝐴) ≤ 𝐵 ↔ ¬ 𝐵 < -(⌊‘-𝐴)))
113, 6, 103bitr4rd 312 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-(⌊‘-𝐴) ≤ 𝐵𝐴 ≤ (⌊‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wcel 2106   class class class wbr 5100  cfv 6488  cr 10980   < clt 11119  cle 11120  -cneg 11316  cfl 13620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058  ax-pre-sup 11059
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-2nd 7909  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-er 8578  df-en 8814  df-dom 8815  df-sdom 8816  df-sup 9308  df-inf 9309  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-nn 12084  df-n0 12344  df-z 12430  df-uz 12693  df-fl 13622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator