Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reflcl | Structured version Visualization version GIF version |
Description: The floor (greatest integer) function is real. (Contributed by NM, 15-Jul-2008.) |
Ref | Expression |
---|---|
reflcl | ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flcl 13214 | . 2 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
2 | 1 | zred 12126 | 1 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6335 ℝcr 10574 ⌊cfl 13209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-sup 8939 df-inf 8940 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-n0 11935 df-z 12021 df-uz 12283 df-fl 13211 |
This theorem is referenced by: fllep1 13220 fraclt1 13221 fracle1 13222 fracge0 13223 fllt 13225 flflp1 13226 flid 13227 flltnz 13230 flval3 13234 refldivcl 13242 fladdz 13244 flzadd 13245 flmulnn0 13246 flltdivnn0lt 13252 ceige 13262 ceim1l 13264 flleceil 13270 fleqceilz 13271 intfracq 13276 fldiv 13277 uzsup 13280 modvalr 13289 modfrac 13301 flmod 13302 intfrac 13303 modmulnn 13306 modcyc 13323 modadd1 13325 moddi 13356 modirr 13359 digit2 13647 digit1 13648 facavg 13711 rddif 14748 absrdbnd 14749 rexuzre 14760 o1fsum 15216 flo1 15257 isprm7 16104 opnmbllem 24301 mbfi1fseqlem1 24415 mbfi1fseqlem3 24417 mbfi1fseqlem4 24418 mbfi1fseqlem5 24419 mbfi1fseqlem6 24420 dvfsumlem1 24725 dvfsumlem2 24726 dvfsumlem3 24727 dvfsumlem4 24728 dvfsum2 24733 harmonicbnd4 25695 chtfl 25833 chpfl 25834 ppieq0 25860 ppiltx 25861 ppiub 25887 chpeq0 25891 chtub 25895 logfac2 25900 chpub 25903 logfacubnd 25904 logfaclbnd 25905 lgsquadlem1 26063 chtppilimlem1 26156 vmadivsum 26165 dchrisumlema 26171 dchrisumlem1 26172 dchrisumlem3 26174 dchrmusum2 26177 dchrisum0lem1b 26198 dchrisum0lem1 26199 dchrisum0lem2a 26200 dchrisum0lem3 26202 mudivsum 26213 mulogsumlem 26214 selberglem2 26229 pntrlog2bndlem6 26266 pntpbnd2 26270 pntlemg 26281 pntlemr 26285 pntlemj 26286 pntlemf 26288 pntlemk 26289 minvecolem4 28762 dnicld1 34223 dnibndlem2 34230 dnibndlem3 34231 dnibndlem4 34232 dnibndlem5 34233 dnibndlem7 34235 dnibndlem8 34236 dnibndlem9 34237 dnibndlem10 34238 dnibndlem11 34239 dnibndlem13 34241 dnibnd 34242 knoppcnlem4 34247 ltflcei 35347 leceifl 35348 opnmbllem0 35395 itg2addnclem2 35411 itg2addnclem3 35412 aks4d1p1p2 39658 hashnzfzclim 41421 lefldiveq 42314 fourierdlem4 43141 fourierdlem26 43163 fourierdlem47 43183 fourierdlem65 43201 flsubz 45318 dignn0flhalflem2 45417 |
Copyright terms: Public domain | W3C validator |