MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneq0b Structured version   Visualization version   GIF version

Theorem lspsneq0b 20895
Description: Equal singleton spans imply both arguments are zero or both are nonzero. (Contributed by NM, 21-Mar-2015.)
Hypotheses
Ref Expression
lspsneq0b.v 𝑉 = (Base‘𝑊)
lspsneq0b.o 0 = (0g𝑊)
lspsneq0b.n 𝑁 = (LSpan‘𝑊)
lspsneq0b.w (𝜑𝑊 ∈ LMod)
lspsneq0b.x (𝜑𝑋𝑉)
lspsneq0b.y (𝜑𝑌𝑉)
lspsneq0b.e (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
Assertion
Ref Expression
lspsneq0b (𝜑 → (𝑋 = 0𝑌 = 0 ))

Proof of Theorem lspsneq0b
StepHypRef Expression
1 lspsneq0b.e . . . . 5 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
21adantr 480 . . . 4 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3 lspsneq0b.w . . . . . 6 (𝜑𝑊 ∈ LMod)
4 lspsneq0b.x . . . . . 6 (𝜑𝑋𝑉)
5 lspsneq0b.v . . . . . . 7 𝑉 = (Base‘𝑊)
6 lspsneq0b.o . . . . . . 7 0 = (0g𝑊)
7 lspsneq0b.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
85, 6, 7lspsneq0 20894 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 ))
93, 4, 8syl2anc 584 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 ))
109biimpar 477 . . . 4 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑋}) = { 0 })
112, 10eqtr3d 2766 . . 3 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑌}) = { 0 })
12 lspsneq0b.y . . . . 5 (𝜑𝑌𝑉)
135, 6, 7lspsneq0 20894 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((𝑁‘{𝑌}) = { 0 } ↔ 𝑌 = 0 ))
143, 12, 13syl2anc 584 . . . 4 (𝜑 → ((𝑁‘{𝑌}) = { 0 } ↔ 𝑌 = 0 ))
1514adantr 480 . . 3 ((𝜑𝑋 = 0 ) → ((𝑁‘{𝑌}) = { 0 } ↔ 𝑌 = 0 ))
1611, 15mpbid 232 . 2 ((𝜑𝑋 = 0 ) → 𝑌 = 0 )
171adantr 480 . . . 4 ((𝜑𝑌 = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
1814biimpar 477 . . . 4 ((𝜑𝑌 = 0 ) → (𝑁‘{𝑌}) = { 0 })
1917, 18eqtrd 2764 . . 3 ((𝜑𝑌 = 0 ) → (𝑁‘{𝑋}) = { 0 })
209adantr 480 . . 3 ((𝜑𝑌 = 0 ) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 ))
2119, 20mpbid 232 . 2 ((𝜑𝑌 = 0 ) → 𝑋 = 0 )
2216, 21impbida 800 1 (𝜑 → (𝑋 = 0𝑌 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {csn 4585  cfv 6499  Basecbs 17155  0gc0g 17378  LModclmod 20742  LSpanclspn 20853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-lmod 20744  df-lss 20814  df-lsp 20854
This theorem is referenced by:  lspsneq  21008
  Copyright terms: Public domain W3C validator