![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodpropd | Structured version Visualization version GIF version |
Description: If two structures have the same components (properties), one is a left module iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 27-Jun-2015.) |
Ref | Expression |
---|---|
lmodpropd.1 | β’ (π β π΅ = (BaseβπΎ)) |
lmodpropd.2 | β’ (π β π΅ = (BaseβπΏ)) |
lmodpropd.3 | β’ ((π β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(+gβπΎ)π¦) = (π₯(+gβπΏ)π¦)) |
lmodpropd.4 | β’ (π β πΉ = (ScalarβπΎ)) |
lmodpropd.5 | β’ (π β πΉ = (ScalarβπΏ)) |
lmodpropd.6 | β’ π = (BaseβπΉ) |
lmodpropd.7 | β’ ((π β§ (π₯ β π β§ π¦ β π΅)) β (π₯( Β·π βπΎ)π¦) = (π₯( Β·π βπΏ)π¦)) |
Ref | Expression |
---|---|
lmodpropd | β’ (π β (πΎ β LMod β πΏ β LMod)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodpropd.1 | . 2 β’ (π β π΅ = (BaseβπΎ)) | |
2 | lmodpropd.2 | . 2 β’ (π β π΅ = (BaseβπΏ)) | |
3 | eqid 2726 | . 2 β’ (ScalarβπΎ) = (ScalarβπΎ) | |
4 | eqid 2726 | . 2 β’ (ScalarβπΏ) = (ScalarβπΏ) | |
5 | lmodpropd.6 | . . 3 β’ π = (BaseβπΉ) | |
6 | lmodpropd.4 | . . . 4 β’ (π β πΉ = (ScalarβπΎ)) | |
7 | 6 | fveq2d 6889 | . . 3 β’ (π β (BaseβπΉ) = (Baseβ(ScalarβπΎ))) |
8 | 5, 7 | eqtrid 2778 | . 2 β’ (π β π = (Baseβ(ScalarβπΎ))) |
9 | lmodpropd.5 | . . . 4 β’ (π β πΉ = (ScalarβπΏ)) | |
10 | 9 | fveq2d 6889 | . . 3 β’ (π β (BaseβπΉ) = (Baseβ(ScalarβπΏ))) |
11 | 5, 10 | eqtrid 2778 | . 2 β’ (π β π = (Baseβ(ScalarβπΏ))) |
12 | lmodpropd.3 | . 2 β’ ((π β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(+gβπΎ)π¦) = (π₯(+gβπΏ)π¦)) | |
13 | 6, 9 | eqtr3d 2768 | . . . . 5 β’ (π β (ScalarβπΎ) = (ScalarβπΏ)) |
14 | 13 | adantr 480 | . . . 4 β’ ((π β§ (π₯ β π β§ π¦ β π)) β (ScalarβπΎ) = (ScalarβπΏ)) |
15 | 14 | fveq2d 6889 | . . 3 β’ ((π β§ (π₯ β π β§ π¦ β π)) β (+gβ(ScalarβπΎ)) = (+gβ(ScalarβπΏ))) |
16 | 15 | oveqd 7422 | . 2 β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯(+gβ(ScalarβπΎ))π¦) = (π₯(+gβ(ScalarβπΏ))π¦)) |
17 | 14 | fveq2d 6889 | . . 3 β’ ((π β§ (π₯ β π β§ π¦ β π)) β (.rβ(ScalarβπΎ)) = (.rβ(ScalarβπΏ))) |
18 | 17 | oveqd 7422 | . 2 β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯(.rβ(ScalarβπΎ))π¦) = (π₯(.rβ(ScalarβπΏ))π¦)) |
19 | lmodpropd.7 | . 2 β’ ((π β§ (π₯ β π β§ π¦ β π΅)) β (π₯( Β·π βπΎ)π¦) = (π₯( Β·π βπΏ)π¦)) | |
20 | 1, 2, 3, 4, 8, 11, 12, 16, 18, 19 | lmodprop2d 20770 | 1 β’ (π β (πΎ β LMod β πΏ β LMod)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 βcfv 6537 (class class class)co 7405 Basecbs 17153 +gcplusg 17206 .rcmulr 17207 Scalarcsca 17209 Β·π cvsca 17210 LModclmod 20706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-plusg 17219 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18866 df-mgp 20040 df-ur 20087 df-ring 20140 df-lmod 20708 |
This theorem is referenced by: lmhmpropd 20921 lvecpropd 21018 assapropd 21766 opsrlmod 22119 matlmod 22286 mnringlmodd 43561 |
Copyright terms: Public domain | W3C validator |