Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt7 Structured version   Visualization version   GIF version

Theorem metakunt7 40991
Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt7.1 (𝜑𝑀 ∈ ℕ)
metakunt7.2 (𝜑𝐼 ∈ ℕ)
metakunt7.3 (𝜑𝐼𝑀)
metakunt7.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt7.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt7.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt7 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) = (𝑋 − 1) ∧ ¬ (𝐴𝑋) = 𝑀 ∧ ¬ (𝐴𝑋) < 𝐼))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐼(𝑦)   𝑀(𝑦)   𝑋(𝑦)

Proof of Theorem metakunt7
StepHypRef Expression
1 metakunt7.4 . . . 4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
21a1i 11 . . 3 ((𝜑𝐼 < 𝑋) → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
3 eqeq1 2737 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = 𝐼𝑋 = 𝐼))
4 breq1 5152 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 < 𝐼𝑋 < 𝐼))
5 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
6 oveq1 7416 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 − 1) = (𝑋 − 1))
74, 5, 6ifbieq12d 4557 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
83, 7ifbieq2d 4555 . . . . 5 (𝑥 = 𝑋 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
98adantl 483 . . . 4 (((𝜑𝐼 < 𝑋) ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
10 metakunt7.2 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℕ)
1110nnred 12227 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℝ)
1211adantr 482 . . . . . . . . . 10 ((𝜑𝐼 < 𝑋) → 𝐼 ∈ ℝ)
13 simpr 486 . . . . . . . . . 10 ((𝜑𝐼 < 𝑋) → 𝐼 < 𝑋)
1412, 13ltned 11350 . . . . . . . . 9 ((𝜑𝐼 < 𝑋) → 𝐼𝑋)
1514necomd 2997 . . . . . . . 8 ((𝜑𝐼 < 𝑋) → 𝑋𝐼)
16 df-ne 2942 . . . . . . . 8 (𝑋𝐼 ↔ ¬ 𝑋 = 𝐼)
1715, 16sylib 217 . . . . . . 7 ((𝜑𝐼 < 𝑋) → ¬ 𝑋 = 𝐼)
18 iffalse 4538 . . . . . . 7 𝑋 = 𝐼 → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
1917, 18syl 17 . . . . . 6 ((𝜑𝐼 < 𝑋) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
20 metakunt7.6 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (1...𝑀))
21 elfznn 13530 . . . . . . . . . . . 12 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
2220, 21syl 17 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℕ)
2322nnred 12227 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
2423adantr 482 . . . . . . . . 9 ((𝜑𝐼 < 𝑋) → 𝑋 ∈ ℝ)
2512, 24, 13ltled 11362 . . . . . . . 8 ((𝜑𝐼 < 𝑋) → 𝐼𝑋)
2612, 24lenltd 11360 . . . . . . . 8 ((𝜑𝐼 < 𝑋) → (𝐼𝑋 ↔ ¬ 𝑋 < 𝐼))
2725, 26mpbid 231 . . . . . . 7 ((𝜑𝐼 < 𝑋) → ¬ 𝑋 < 𝐼)
28 iffalse 4538 . . . . . . 7 𝑋 < 𝐼 → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = (𝑋 − 1))
2927, 28syl 17 . . . . . 6 ((𝜑𝐼 < 𝑋) → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = (𝑋 − 1))
3019, 29eqtrd 2773 . . . . 5 ((𝜑𝐼 < 𝑋) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = (𝑋 − 1))
3130adantr 482 . . . 4 (((𝜑𝐼 < 𝑋) ∧ 𝑥 = 𝑋) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = (𝑋 − 1))
329, 31eqtrd 2773 . . 3 (((𝜑𝐼 < 𝑋) ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = (𝑋 − 1))
3320adantr 482 . . 3 ((𝜑𝐼 < 𝑋) → 𝑋 ∈ (1...𝑀))
3433elfzelzd 13502 . . . 4 ((𝜑𝐼 < 𝑋) → 𝑋 ∈ ℤ)
35 1zzd 12593 . . . 4 ((𝜑𝐼 < 𝑋) → 1 ∈ ℤ)
3634, 35zsubcld 12671 . . 3 ((𝜑𝐼 < 𝑋) → (𝑋 − 1) ∈ ℤ)
372, 32, 33, 36fvmptd 7006 . 2 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) = (𝑋 − 1))
38 1red 11215 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
3923, 38resubcld 11642 . . . . . 6 (𝜑 → (𝑋 − 1) ∈ ℝ)
40 elfzle2 13505 . . . . . . . 8 (𝑋 ∈ (1...𝑀) → 𝑋𝑀)
4120, 40syl 17 . . . . . . 7 (𝜑𝑋𝑀)
4220elfzelzd 13502 . . . . . . . 8 (𝜑𝑋 ∈ ℤ)
43 metakunt7.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
4443nnzd 12585 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
45 zlem1lt 12614 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑋𝑀 ↔ (𝑋 − 1) < 𝑀))
4642, 44, 45syl2anc 585 . . . . . . 7 (𝜑 → (𝑋𝑀 ↔ (𝑋 − 1) < 𝑀))
4741, 46mpbid 231 . . . . . 6 (𝜑 → (𝑋 − 1) < 𝑀)
4839, 47ltned 11350 . . . . 5 (𝜑 → (𝑋 − 1) ≠ 𝑀)
4948adantr 482 . . . 4 ((𝜑𝐼 < 𝑋) → (𝑋 − 1) ≠ 𝑀)
5037, 49eqnetrd 3009 . . 3 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) ≠ 𝑀)
5150neneqd 2946 . 2 ((𝜑𝐼 < 𝑋) → ¬ (𝐴𝑋) = 𝑀)
5210nnzd 12585 . . . . . 6 (𝜑𝐼 ∈ ℤ)
53 zltlem1 12615 . . . . . . 7 ((𝐼 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝐼 < 𝑋𝐼 ≤ (𝑋 − 1)))
5453biimpd 228 . . . . . 6 ((𝐼 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝐼 < 𝑋𝐼 ≤ (𝑋 − 1)))
5552, 42, 54syl2anc 585 . . . . 5 (𝜑 → (𝐼 < 𝑋𝐼 ≤ (𝑋 − 1)))
5655imp 408 . . . 4 ((𝜑𝐼 < 𝑋) → 𝐼 ≤ (𝑋 − 1))
5756, 37breqtrrd 5177 . . 3 ((𝜑𝐼 < 𝑋) → 𝐼 ≤ (𝐴𝑋))
5836zred 12666 . . . . 5 ((𝜑𝐼 < 𝑋) → (𝑋 − 1) ∈ ℝ)
5937, 58eqeltrd 2834 . . . 4 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) ∈ ℝ)
6012, 59lenltd 11360 . . 3 ((𝜑𝐼 < 𝑋) → (𝐼 ≤ (𝐴𝑋) ↔ ¬ (𝐴𝑋) < 𝐼))
6157, 60mpbid 231 . 2 ((𝜑𝐼 < 𝑋) → ¬ (𝐴𝑋) < 𝐼)
6237, 51, 613jca 1129 1 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) = (𝑋 − 1) ∧ ¬ (𝐴𝑋) = 𝑀 ∧ ¬ (𝐴𝑋) < 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  ifcif 4529   class class class wbr 5149  cmpt 5232  cfv 6544  (class class class)co 7409  cr 11109  1c1 11111   + caddc 11113   < clt 11248  cle 11249  cmin 11444  cn 12212  cz 12558  ...cfz 13484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485
This theorem is referenced by:  metakunt8  40992
  Copyright terms: Public domain W3C validator