Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt7 Structured version   Visualization version   GIF version

Theorem metakunt7 40059
Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt7.1 (𝜑𝑀 ∈ ℕ)
metakunt7.2 (𝜑𝐼 ∈ ℕ)
metakunt7.3 (𝜑𝐼𝑀)
metakunt7.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt7.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt7.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt7 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) = (𝑋 − 1) ∧ ¬ (𝐴𝑋) = 𝑀 ∧ ¬ (𝐴𝑋) < 𝐼))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐼(𝑦)   𝑀(𝑦)   𝑋(𝑦)

Proof of Theorem metakunt7
StepHypRef Expression
1 metakunt7.4 . . . 4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
21a1i 11 . . 3 ((𝜑𝐼 < 𝑋) → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
3 eqeq1 2742 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = 𝐼𝑋 = 𝐼))
4 breq1 5073 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 < 𝐼𝑋 < 𝐼))
5 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
6 oveq1 7262 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 − 1) = (𝑋 − 1))
74, 5, 6ifbieq12d 4484 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
83, 7ifbieq2d 4482 . . . . 5 (𝑥 = 𝑋 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
98adantl 481 . . . 4 (((𝜑𝐼 < 𝑋) ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
10 metakunt7.2 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℕ)
1110nnred 11918 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℝ)
1211adantr 480 . . . . . . . . . 10 ((𝜑𝐼 < 𝑋) → 𝐼 ∈ ℝ)
13 simpr 484 . . . . . . . . . 10 ((𝜑𝐼 < 𝑋) → 𝐼 < 𝑋)
1412, 13ltned 11041 . . . . . . . . 9 ((𝜑𝐼 < 𝑋) → 𝐼𝑋)
1514necomd 2998 . . . . . . . 8 ((𝜑𝐼 < 𝑋) → 𝑋𝐼)
16 df-ne 2943 . . . . . . . 8 (𝑋𝐼 ↔ ¬ 𝑋 = 𝐼)
1715, 16sylib 217 . . . . . . 7 ((𝜑𝐼 < 𝑋) → ¬ 𝑋 = 𝐼)
18 iffalse 4465 . . . . . . 7 𝑋 = 𝐼 → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
1917, 18syl 17 . . . . . 6 ((𝜑𝐼 < 𝑋) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
20 metakunt7.6 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (1...𝑀))
21 elfznn 13214 . . . . . . . . . . . 12 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
2220, 21syl 17 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℕ)
2322nnred 11918 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
2423adantr 480 . . . . . . . . 9 ((𝜑𝐼 < 𝑋) → 𝑋 ∈ ℝ)
2512, 24, 13ltled 11053 . . . . . . . 8 ((𝜑𝐼 < 𝑋) → 𝐼𝑋)
2612, 24lenltd 11051 . . . . . . . 8 ((𝜑𝐼 < 𝑋) → (𝐼𝑋 ↔ ¬ 𝑋 < 𝐼))
2725, 26mpbid 231 . . . . . . 7 ((𝜑𝐼 < 𝑋) → ¬ 𝑋 < 𝐼)
28 iffalse 4465 . . . . . . 7 𝑋 < 𝐼 → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = (𝑋 − 1))
2927, 28syl 17 . . . . . 6 ((𝜑𝐼 < 𝑋) → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = (𝑋 − 1))
3019, 29eqtrd 2778 . . . . 5 ((𝜑𝐼 < 𝑋) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = (𝑋 − 1))
3130adantr 480 . . . 4 (((𝜑𝐼 < 𝑋) ∧ 𝑥 = 𝑋) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = (𝑋 − 1))
329, 31eqtrd 2778 . . 3 (((𝜑𝐼 < 𝑋) ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = (𝑋 − 1))
3320adantr 480 . . 3 ((𝜑𝐼 < 𝑋) → 𝑋 ∈ (1...𝑀))
3433elfzelzd 13186 . . . 4 ((𝜑𝐼 < 𝑋) → 𝑋 ∈ ℤ)
35 1zzd 12281 . . . 4 ((𝜑𝐼 < 𝑋) → 1 ∈ ℤ)
3634, 35zsubcld 12360 . . 3 ((𝜑𝐼 < 𝑋) → (𝑋 − 1) ∈ ℤ)
372, 32, 33, 36fvmptd 6864 . 2 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) = (𝑋 − 1))
38 1red 10907 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
3923, 38resubcld 11333 . . . . . 6 (𝜑 → (𝑋 − 1) ∈ ℝ)
40 elfzle2 13189 . . . . . . . 8 (𝑋 ∈ (1...𝑀) → 𝑋𝑀)
4120, 40syl 17 . . . . . . 7 (𝜑𝑋𝑀)
4220elfzelzd 13186 . . . . . . . 8 (𝜑𝑋 ∈ ℤ)
43 metakunt7.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
4443nnzd 12354 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
45 zlem1lt 12302 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑋𝑀 ↔ (𝑋 − 1) < 𝑀))
4642, 44, 45syl2anc 583 . . . . . . 7 (𝜑 → (𝑋𝑀 ↔ (𝑋 − 1) < 𝑀))
4741, 46mpbid 231 . . . . . 6 (𝜑 → (𝑋 − 1) < 𝑀)
4839, 47ltned 11041 . . . . 5 (𝜑 → (𝑋 − 1) ≠ 𝑀)
4948adantr 480 . . . 4 ((𝜑𝐼 < 𝑋) → (𝑋 − 1) ≠ 𝑀)
5037, 49eqnetrd 3010 . . 3 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) ≠ 𝑀)
5150neneqd 2947 . 2 ((𝜑𝐼 < 𝑋) → ¬ (𝐴𝑋) = 𝑀)
5210nnzd 12354 . . . . . 6 (𝜑𝐼 ∈ ℤ)
53 zltlem1 12303 . . . . . . 7 ((𝐼 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝐼 < 𝑋𝐼 ≤ (𝑋 − 1)))
5453biimpd 228 . . . . . 6 ((𝐼 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝐼 < 𝑋𝐼 ≤ (𝑋 − 1)))
5552, 42, 54syl2anc 583 . . . . 5 (𝜑 → (𝐼 < 𝑋𝐼 ≤ (𝑋 − 1)))
5655imp 406 . . . 4 ((𝜑𝐼 < 𝑋) → 𝐼 ≤ (𝑋 − 1))
5756, 37breqtrrd 5098 . . 3 ((𝜑𝐼 < 𝑋) → 𝐼 ≤ (𝐴𝑋))
5836zred 12355 . . . . 5 ((𝜑𝐼 < 𝑋) → (𝑋 − 1) ∈ ℝ)
5937, 58eqeltrd 2839 . . . 4 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) ∈ ℝ)
6012, 59lenltd 11051 . . 3 ((𝜑𝐼 < 𝑋) → (𝐼 ≤ (𝐴𝑋) ↔ ¬ (𝐴𝑋) < 𝐼))
6157, 60mpbid 231 . 2 ((𝜑𝐼 < 𝑋) → ¬ (𝐴𝑋) < 𝐼)
6237, 51, 613jca 1126 1 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) = (𝑋 − 1) ∧ ¬ (𝐴𝑋) = 𝑀 ∧ ¬ (𝐴𝑋) < 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  ifcif 4456   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  cz 12249  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169
This theorem is referenced by:  metakunt8  40060
  Copyright terms: Public domain W3C validator