Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt7 Structured version   Visualization version   GIF version

Theorem metakunt7 39638
Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt7.1 (𝜑𝑀 ∈ ℕ)
metakunt7.2 (𝜑𝐼 ∈ ℕ)
metakunt7.3 (𝜑𝐼𝑀)
metakunt7.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt7.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt7.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt7 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) = (𝑋 − 1) ∧ ¬ (𝐴𝑋) = 𝑀 ∧ ¬ (𝐴𝑋) < 𝐼))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐼(𝑦)   𝑀(𝑦)   𝑋(𝑦)

Proof of Theorem metakunt7
StepHypRef Expression
1 metakunt7.4 . . . 4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
21a1i 11 . . 3 ((𝜑𝐼 < 𝑋) → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
3 eqeq1 2763 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = 𝐼𝑋 = 𝐼))
4 breq1 5028 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 < 𝐼𝑋 < 𝐼))
5 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
6 oveq1 7150 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 − 1) = (𝑋 − 1))
74, 5, 6ifbieq12d 4441 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
83, 7ifbieq2d 4439 . . . . 5 (𝑥 = 𝑋 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
98adantl 486 . . . 4 (((𝜑𝐼 < 𝑋) ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
10 metakunt7.2 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℕ)
1110nnred 11674 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℝ)
1211adantr 485 . . . . . . . . . 10 ((𝜑𝐼 < 𝑋) → 𝐼 ∈ ℝ)
13 simpr 489 . . . . . . . . . 10 ((𝜑𝐼 < 𝑋) → 𝐼 < 𝑋)
1412, 13ltned 10799 . . . . . . . . 9 ((𝜑𝐼 < 𝑋) → 𝐼𝑋)
1514necomd 3004 . . . . . . . 8 ((𝜑𝐼 < 𝑋) → 𝑋𝐼)
16 df-ne 2950 . . . . . . . 8 (𝑋𝐼 ↔ ¬ 𝑋 = 𝐼)
1715, 16sylib 221 . . . . . . 7 ((𝜑𝐼 < 𝑋) → ¬ 𝑋 = 𝐼)
18 iffalse 4422 . . . . . . 7 𝑋 = 𝐼 → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
1917, 18syl 17 . . . . . 6 ((𝜑𝐼 < 𝑋) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
20 metakunt7.6 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (1...𝑀))
21 elfznn 12970 . . . . . . . . . . . 12 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
2220, 21syl 17 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℕ)
2322nnred 11674 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
2423adantr 485 . . . . . . . . 9 ((𝜑𝐼 < 𝑋) → 𝑋 ∈ ℝ)
2512, 24, 13ltled 10811 . . . . . . . 8 ((𝜑𝐼 < 𝑋) → 𝐼𝑋)
2612, 24lenltd 10809 . . . . . . . 8 ((𝜑𝐼 < 𝑋) → (𝐼𝑋 ↔ ¬ 𝑋 < 𝐼))
2725, 26mpbid 235 . . . . . . 7 ((𝜑𝐼 < 𝑋) → ¬ 𝑋 < 𝐼)
28 iffalse 4422 . . . . . . 7 𝑋 < 𝐼 → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = (𝑋 − 1))
2927, 28syl 17 . . . . . 6 ((𝜑𝐼 < 𝑋) → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = (𝑋 − 1))
3019, 29eqtrd 2794 . . . . 5 ((𝜑𝐼 < 𝑋) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = (𝑋 − 1))
3130adantr 485 . . . 4 (((𝜑𝐼 < 𝑋) ∧ 𝑥 = 𝑋) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = (𝑋 − 1))
329, 31eqtrd 2794 . . 3 (((𝜑𝐼 < 𝑋) ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = (𝑋 − 1))
3320adantr 485 . . 3 ((𝜑𝐼 < 𝑋) → 𝑋 ∈ (1...𝑀))
3433elfzelzd 12942 . . . 4 ((𝜑𝐼 < 𝑋) → 𝑋 ∈ ℤ)
35 1zzd 12037 . . . 4 ((𝜑𝐼 < 𝑋) → 1 ∈ ℤ)
3634, 35zsubcld 12116 . . 3 ((𝜑𝐼 < 𝑋) → (𝑋 − 1) ∈ ℤ)
372, 32, 33, 36fvmptd 6759 . 2 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) = (𝑋 − 1))
38 1red 10665 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
3923, 38resubcld 11091 . . . . . 6 (𝜑 → (𝑋 − 1) ∈ ℝ)
40 elfzle2 12945 . . . . . . . 8 (𝑋 ∈ (1...𝑀) → 𝑋𝑀)
4120, 40syl 17 . . . . . . 7 (𝜑𝑋𝑀)
4222nnzd 12110 . . . . . . . 8 (𝜑𝑋 ∈ ℤ)
43 metakunt7.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
4443nnzd 12110 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
45 zlem1lt 12058 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑋𝑀 ↔ (𝑋 − 1) < 𝑀))
4642, 44, 45syl2anc 588 . . . . . . 7 (𝜑 → (𝑋𝑀 ↔ (𝑋 − 1) < 𝑀))
4741, 46mpbid 235 . . . . . 6 (𝜑 → (𝑋 − 1) < 𝑀)
4839, 47ltned 10799 . . . . 5 (𝜑 → (𝑋 − 1) ≠ 𝑀)
4948adantr 485 . . . 4 ((𝜑𝐼 < 𝑋) → (𝑋 − 1) ≠ 𝑀)
5037, 49eqnetrd 3016 . . 3 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) ≠ 𝑀)
5150neneqd 2954 . 2 ((𝜑𝐼 < 𝑋) → ¬ (𝐴𝑋) = 𝑀)
5210nnzd 12110 . . . . . 6 (𝜑𝐼 ∈ ℤ)
53 zltlem1 12059 . . . . . . 7 ((𝐼 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝐼 < 𝑋𝐼 ≤ (𝑋 − 1)))
5453biimpd 232 . . . . . 6 ((𝐼 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝐼 < 𝑋𝐼 ≤ (𝑋 − 1)))
5552, 42, 54syl2anc 588 . . . . 5 (𝜑 → (𝐼 < 𝑋𝐼 ≤ (𝑋 − 1)))
5655imp 411 . . . 4 ((𝜑𝐼 < 𝑋) → 𝐼 ≤ (𝑋 − 1))
5756, 37breqtrrd 5053 . . 3 ((𝜑𝐼 < 𝑋) → 𝐼 ≤ (𝐴𝑋))
5836zred 12111 . . . . 5 ((𝜑𝐼 < 𝑋) → (𝑋 − 1) ∈ ℝ)
5937, 58eqeltrd 2851 . . . 4 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) ∈ ℝ)
6012, 59lenltd 10809 . . 3 ((𝜑𝐼 < 𝑋) → (𝐼 ≤ (𝐴𝑋) ↔ ¬ (𝐴𝑋) < 𝐼))
6157, 60mpbid 235 . 2 ((𝜑𝐼 < 𝑋) → ¬ (𝐴𝑋) < 𝐼)
6237, 51, 613jca 1126 1 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) = (𝑋 − 1) ∧ ¬ (𝐴𝑋) = 𝑀 ∧ ¬ (𝐴𝑋) < 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112  wne 2949  ifcif 4413   class class class wbr 5025  cmpt 5105  cfv 6328  (class class class)co 7143  cr 10559  1c1 10561   + caddc 10563   < clt 10698  cle 10699  cmin 10893  cn 11659  cz 12005  ...cfz 12924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-n0 11920  df-z 12006  df-uz 12268  df-fz 12925
This theorem is referenced by:  metakunt8  39639
  Copyright terms: Public domain W3C validator