Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt7 Structured version   Visualization version   GIF version

Theorem metakunt7 41298
Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt7.1 (𝜑𝑀 ∈ ℕ)
metakunt7.2 (𝜑𝐼 ∈ ℕ)
metakunt7.3 (𝜑𝐼𝑀)
metakunt7.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt7.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt7.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt7 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) = (𝑋 − 1) ∧ ¬ (𝐴𝑋) = 𝑀 ∧ ¬ (𝐴𝑋) < 𝐼))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐼(𝑦)   𝑀(𝑦)   𝑋(𝑦)

Proof of Theorem metakunt7
StepHypRef Expression
1 metakunt7.4 . . . 4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
21a1i 11 . . 3 ((𝜑𝐼 < 𝑋) → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
3 eqeq1 2735 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = 𝐼𝑋 = 𝐼))
4 breq1 5151 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 < 𝐼𝑋 < 𝐼))
5 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
6 oveq1 7419 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 − 1) = (𝑋 − 1))
74, 5, 6ifbieq12d 4556 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
83, 7ifbieq2d 4554 . . . . 5 (𝑥 = 𝑋 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
98adantl 481 . . . 4 (((𝜑𝐼 < 𝑋) ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
10 metakunt7.2 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℕ)
1110nnred 12232 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℝ)
1211adantr 480 . . . . . . . . . 10 ((𝜑𝐼 < 𝑋) → 𝐼 ∈ ℝ)
13 simpr 484 . . . . . . . . . 10 ((𝜑𝐼 < 𝑋) → 𝐼 < 𝑋)
1412, 13ltned 11355 . . . . . . . . 9 ((𝜑𝐼 < 𝑋) → 𝐼𝑋)
1514necomd 2995 . . . . . . . 8 ((𝜑𝐼 < 𝑋) → 𝑋𝐼)
16 df-ne 2940 . . . . . . . 8 (𝑋𝐼 ↔ ¬ 𝑋 = 𝐼)
1715, 16sylib 217 . . . . . . 7 ((𝜑𝐼 < 𝑋) → ¬ 𝑋 = 𝐼)
18 iffalse 4537 . . . . . . 7 𝑋 = 𝐼 → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
1917, 18syl 17 . . . . . 6 ((𝜑𝐼 < 𝑋) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
20 metakunt7.6 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (1...𝑀))
21 elfznn 13535 . . . . . . . . . . . 12 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
2220, 21syl 17 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℕ)
2322nnred 12232 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
2423adantr 480 . . . . . . . . 9 ((𝜑𝐼 < 𝑋) → 𝑋 ∈ ℝ)
2512, 24, 13ltled 11367 . . . . . . . 8 ((𝜑𝐼 < 𝑋) → 𝐼𝑋)
2612, 24lenltd 11365 . . . . . . . 8 ((𝜑𝐼 < 𝑋) → (𝐼𝑋 ↔ ¬ 𝑋 < 𝐼))
2725, 26mpbid 231 . . . . . . 7 ((𝜑𝐼 < 𝑋) → ¬ 𝑋 < 𝐼)
28 iffalse 4537 . . . . . . 7 𝑋 < 𝐼 → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = (𝑋 − 1))
2927, 28syl 17 . . . . . 6 ((𝜑𝐼 < 𝑋) → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = (𝑋 − 1))
3019, 29eqtrd 2771 . . . . 5 ((𝜑𝐼 < 𝑋) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = (𝑋 − 1))
3130adantr 480 . . . 4 (((𝜑𝐼 < 𝑋) ∧ 𝑥 = 𝑋) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = (𝑋 − 1))
329, 31eqtrd 2771 . . 3 (((𝜑𝐼 < 𝑋) ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = (𝑋 − 1))
3320adantr 480 . . 3 ((𝜑𝐼 < 𝑋) → 𝑋 ∈ (1...𝑀))
3433elfzelzd 13507 . . . 4 ((𝜑𝐼 < 𝑋) → 𝑋 ∈ ℤ)
35 1zzd 12598 . . . 4 ((𝜑𝐼 < 𝑋) → 1 ∈ ℤ)
3634, 35zsubcld 12676 . . 3 ((𝜑𝐼 < 𝑋) → (𝑋 − 1) ∈ ℤ)
372, 32, 33, 36fvmptd 7005 . 2 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) = (𝑋 − 1))
38 1red 11220 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
3923, 38resubcld 11647 . . . . . 6 (𝜑 → (𝑋 − 1) ∈ ℝ)
40 elfzle2 13510 . . . . . . . 8 (𝑋 ∈ (1...𝑀) → 𝑋𝑀)
4120, 40syl 17 . . . . . . 7 (𝜑𝑋𝑀)
4220elfzelzd 13507 . . . . . . . 8 (𝜑𝑋 ∈ ℤ)
43 metakunt7.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
4443nnzd 12590 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
45 zlem1lt 12619 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑋𝑀 ↔ (𝑋 − 1) < 𝑀))
4642, 44, 45syl2anc 583 . . . . . . 7 (𝜑 → (𝑋𝑀 ↔ (𝑋 − 1) < 𝑀))
4741, 46mpbid 231 . . . . . 6 (𝜑 → (𝑋 − 1) < 𝑀)
4839, 47ltned 11355 . . . . 5 (𝜑 → (𝑋 − 1) ≠ 𝑀)
4948adantr 480 . . . 4 ((𝜑𝐼 < 𝑋) → (𝑋 − 1) ≠ 𝑀)
5037, 49eqnetrd 3007 . . 3 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) ≠ 𝑀)
5150neneqd 2944 . 2 ((𝜑𝐼 < 𝑋) → ¬ (𝐴𝑋) = 𝑀)
5210nnzd 12590 . . . . . 6 (𝜑𝐼 ∈ ℤ)
53 zltlem1 12620 . . . . . . 7 ((𝐼 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝐼 < 𝑋𝐼 ≤ (𝑋 − 1)))
5453biimpd 228 . . . . . 6 ((𝐼 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝐼 < 𝑋𝐼 ≤ (𝑋 − 1)))
5552, 42, 54syl2anc 583 . . . . 5 (𝜑 → (𝐼 < 𝑋𝐼 ≤ (𝑋 − 1)))
5655imp 406 . . . 4 ((𝜑𝐼 < 𝑋) → 𝐼 ≤ (𝑋 − 1))
5756, 37breqtrrd 5176 . . 3 ((𝜑𝐼 < 𝑋) → 𝐼 ≤ (𝐴𝑋))
5836zred 12671 . . . . 5 ((𝜑𝐼 < 𝑋) → (𝑋 − 1) ∈ ℝ)
5937, 58eqeltrd 2832 . . . 4 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) ∈ ℝ)
6012, 59lenltd 11365 . . 3 ((𝜑𝐼 < 𝑋) → (𝐼 ≤ (𝐴𝑋) ↔ ¬ (𝐴𝑋) < 𝐼))
6157, 60mpbid 231 . 2 ((𝜑𝐼 < 𝑋) → ¬ (𝐴𝑋) < 𝐼)
6237, 51, 613jca 1127 1 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) = (𝑋 − 1) ∧ ¬ (𝐴𝑋) = 𝑀 ∧ ¬ (𝐴𝑋) < 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  ifcif 4528   class class class wbr 5148  cmpt 5231  cfv 6543  (class class class)co 7412  cr 11113  1c1 11115   + caddc 11117   < clt 11253  cle 11254  cmin 11449  cn 12217  cz 12563  ...cfz 13489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490
This theorem is referenced by:  metakunt8  41299
  Copyright terms: Public domain W3C validator