Mathbox for metakunt < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt7 Structured version   Visualization version   GIF version

Theorem metakunt7 39507
 Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt7.1 (𝜑𝑀 ∈ ℕ)
metakunt7.2 (𝜑𝐼 ∈ ℕ)
metakunt7.3 (𝜑𝐼𝑀)
metakunt7.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt7.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt7.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt7 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) = (𝑋 − 1) ∧ ¬ (𝐴𝑋) = 𝑀 ∧ ¬ (𝐴𝑋) < 𝐼))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑀   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐼(𝑦)   𝑀(𝑦)   𝑋(𝑦)

Proof of Theorem metakunt7
StepHypRef Expression
1 metakunt7.4 . . . 4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
21a1i 11 . . 3 ((𝜑𝐼 < 𝑋) → 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))))
3 eqeq1 2802 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = 𝐼𝑋 = 𝐼))
4 breq1 5037 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 < 𝐼𝑋 < 𝐼))
5 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
6 oveq1 7152 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 − 1) = (𝑋 − 1))
74, 5, 6ifbieq12d 4455 . . . . . 6 (𝑥 = 𝑋 → if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
83, 7ifbieq2d 4453 . . . . 5 (𝑥 = 𝑋 → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
98adantl 485 . . . 4 (((𝜑𝐼 < 𝑋) ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))))
10 metakunt7.2 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℕ)
1110nnred 11658 . . . . . . . . . . 11 (𝜑𝐼 ∈ ℝ)
1211adantr 484 . . . . . . . . . 10 ((𝜑𝐼 < 𝑋) → 𝐼 ∈ ℝ)
13 simpr 488 . . . . . . . . . 10 ((𝜑𝐼 < 𝑋) → 𝐼 < 𝑋)
1412, 13ltned 10783 . . . . . . . . 9 ((𝜑𝐼 < 𝑋) → 𝐼𝑋)
1514necomd 3042 . . . . . . . 8 ((𝜑𝐼 < 𝑋) → 𝑋𝐼)
16 df-ne 2988 . . . . . . . 8 (𝑋𝐼 ↔ ¬ 𝑋 = 𝐼)
1715, 16sylib 221 . . . . . . 7 ((𝜑𝐼 < 𝑋) → ¬ 𝑋 = 𝐼)
18 iffalse 4437 . . . . . . 7 𝑋 = 𝐼 → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
1917, 18syl 17 . . . . . 6 ((𝜑𝐼 < 𝑋) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)))
20 metakunt7.6 . . . . . . . . . . . 12 (𝜑𝑋 ∈ (1...𝑀))
21 elfznn 12951 . . . . . . . . . . . 12 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
2220, 21syl 17 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℕ)
2322nnred 11658 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
2423adantr 484 . . . . . . . . 9 ((𝜑𝐼 < 𝑋) → 𝑋 ∈ ℝ)
2512, 24, 13ltled 10795 . . . . . . . 8 ((𝜑𝐼 < 𝑋) → 𝐼𝑋)
2612, 24lenltd 10793 . . . . . . . 8 ((𝜑𝐼 < 𝑋) → (𝐼𝑋 ↔ ¬ 𝑋 < 𝐼))
2725, 26mpbid 235 . . . . . . 7 ((𝜑𝐼 < 𝑋) → ¬ 𝑋 < 𝐼)
28 iffalse 4437 . . . . . . 7 𝑋 < 𝐼 → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = (𝑋 − 1))
2927, 28syl 17 . . . . . 6 ((𝜑𝐼 < 𝑋) → if(𝑋 < 𝐼, 𝑋, (𝑋 − 1)) = (𝑋 − 1))
3019, 29eqtrd 2833 . . . . 5 ((𝜑𝐼 < 𝑋) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = (𝑋 − 1))
3130adantr 484 . . . 4 (((𝜑𝐼 < 𝑋) ∧ 𝑥 = 𝑋) → if(𝑋 = 𝐼, 𝑀, if(𝑋 < 𝐼, 𝑋, (𝑋 − 1))) = (𝑋 − 1))
329, 31eqtrd 2833 . . 3 (((𝜑𝐼 < 𝑋) ∧ 𝑥 = 𝑋) → if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))) = (𝑋 − 1))
3320adantr 484 . . 3 ((𝜑𝐼 < 𝑋) → 𝑋 ∈ (1...𝑀))
3433elfzelzd 12923 . . . 4 ((𝜑𝐼 < 𝑋) → 𝑋 ∈ ℤ)
35 1zzd 12021 . . . 4 ((𝜑𝐼 < 𝑋) → 1 ∈ ℤ)
3634, 35zsubcld 12100 . . 3 ((𝜑𝐼 < 𝑋) → (𝑋 − 1) ∈ ℤ)
372, 32, 33, 36fvmptd 6762 . 2 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) = (𝑋 − 1))
38 1red 10649 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
3923, 38resubcld 11075 . . . . . 6 (𝜑 → (𝑋 − 1) ∈ ℝ)
40 elfzle2 12926 . . . . . . . 8 (𝑋 ∈ (1...𝑀) → 𝑋𝑀)
4120, 40syl 17 . . . . . . 7 (𝜑𝑋𝑀)
4222nnzd 12094 . . . . . . . 8 (𝜑𝑋 ∈ ℤ)
43 metakunt7.1 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
4443nnzd 12094 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
45 zlem1lt 12042 . . . . . . . 8 ((𝑋 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑋𝑀 ↔ (𝑋 − 1) < 𝑀))
4642, 44, 45syl2anc 587 . . . . . . 7 (𝜑 → (𝑋𝑀 ↔ (𝑋 − 1) < 𝑀))
4741, 46mpbid 235 . . . . . 6 (𝜑 → (𝑋 − 1) < 𝑀)
4839, 47ltned 10783 . . . . 5 (𝜑 → (𝑋 − 1) ≠ 𝑀)
4948adantr 484 . . . 4 ((𝜑𝐼 < 𝑋) → (𝑋 − 1) ≠ 𝑀)
5037, 49eqnetrd 3054 . . 3 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) ≠ 𝑀)
5150neneqd 2992 . 2 ((𝜑𝐼 < 𝑋) → ¬ (𝐴𝑋) = 𝑀)
5210nnzd 12094 . . . . . 6 (𝜑𝐼 ∈ ℤ)
53 zltlem1 12043 . . . . . . 7 ((𝐼 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝐼 < 𝑋𝐼 ≤ (𝑋 − 1)))
5453biimpd 232 . . . . . 6 ((𝐼 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝐼 < 𝑋𝐼 ≤ (𝑋 − 1)))
5552, 42, 54syl2anc 587 . . . . 5 (𝜑 → (𝐼 < 𝑋𝐼 ≤ (𝑋 − 1)))
5655imp 410 . . . 4 ((𝜑𝐼 < 𝑋) → 𝐼 ≤ (𝑋 − 1))
5756, 37breqtrrd 5062 . . 3 ((𝜑𝐼 < 𝑋) → 𝐼 ≤ (𝐴𝑋))
5836zred 12095 . . . . 5 ((𝜑𝐼 < 𝑋) → (𝑋 − 1) ∈ ℝ)
5937, 58eqeltrd 2890 . . . 4 ((𝜑𝐼 < 𝑋) → (𝐴𝑋) ∈ ℝ)
6012, 59lenltd 10793 . . 3 ((𝜑𝐼 < 𝑋) → (𝐼 ≤ (𝐴𝑋) ↔ ¬ (𝐴𝑋) < 𝐼))
6157, 60mpbid 235 . 2 ((𝜑𝐼 < 𝑋) → ¬ (𝐴𝑋) < 𝐼)
6237, 51, 613jca 1125 1 ((𝜑𝐼 < 𝑋) → ((𝐴𝑋) = (𝑋 − 1) ∧ ¬ (𝐴𝑋) = 𝑀 ∧ ¬ (𝐴𝑋) < 𝐼))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ifcif 4428   class class class wbr 5034   ↦ cmpt 5114  ‘cfv 6332  (class class class)co 7145  ℝcr 10543  1c1 10545   + caddc 10547   < clt 10682   ≤ cle 10683   − cmin 10877  ℕcn 11643  ℤcz 11989  ...cfz 12905 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-er 8290  df-en 8511  df-dom 8512  df-sdom 8513  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-n0 11904  df-z 11990  df-uz 12252  df-fz 12906 This theorem is referenced by:  metakunt8  39508
 Copyright terms: Public domain W3C validator