MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdscn2 Structured version   Visualization version   GIF version

Theorem metdscn2 24762
Description: The function 𝐹 which gives the distance from a point to a nonempty set in a metric space is a continuous function into the topology of the complex numbers. (Contributed by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metdscn2.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
metdscn2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑦,𝐽   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐽(𝑥)   𝐾(𝑥,𝑦)

Proof of Theorem metdscn2
StepHypRef Expression
1 eqid 2729 . . . . . . 7 (dist‘ℝ*𝑠) = (dist‘ℝ*𝑠)
21xrsdsre 24715 . . . . . 6 ((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
31xrsxmet 24714 . . . . . . 7 (dist‘ℝ*𝑠) ∈ (∞Met‘ℝ*)
4 ressxr 11178 . . . . . . 7 ℝ ⊆ ℝ*
5 eqid 2729 . . . . . . . 8 ((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)) = ((dist‘ℝ*𝑠) ↾ (ℝ × ℝ))
6 eqid 2729 . . . . . . . 8 (MetOpen‘(dist‘ℝ*𝑠)) = (MetOpen‘(dist‘ℝ*𝑠))
7 eqid 2729 . . . . . . . 8 (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ))) = (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)))
85, 6, 7metrest 24428 . . . . . . 7 (((dist‘ℝ*𝑠) ∈ (∞Met‘ℝ*) ∧ ℝ ⊆ ℝ*) → ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) = (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ))))
93, 4, 8mp2an 692 . . . . . 6 ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) = (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)))
102, 9tgioo 24700 . . . . 5 (topGen‘ran (,)) = ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)
11 metdscn2.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
1211tgioo2 24707 . . . . 5 (topGen‘ran (,)) = (𝐾t ℝ)
1310, 12eqtr3i 2754 . . . 4 ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) = (𝐾t ℝ)
1413oveq2i 7364 . . 3 (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)) = (𝐽 Cn (𝐾t ℝ))
1511cnfldtop 24687 . . . 4 𝐾 ∈ Top
16 cnrest2r 23190 . . . 4 (𝐾 ∈ Top → (𝐽 Cn (𝐾t ℝ)) ⊆ (𝐽 Cn 𝐾))
1715, 16ax-mp 5 . . 3 (𝐽 Cn (𝐾t ℝ)) ⊆ (𝐽 Cn 𝐾)
1814, 17eqsstri 3984 . 2 (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)) ⊆ (𝐽 Cn 𝐾)
19 metxmet 24238 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
20 metdscn.f . . . . . 6 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
21 metdscn.j . . . . . 6 𝐽 = (MetOpen‘𝐷)
2220, 21, 1, 6metdscn 24761 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))))
2319, 22sylan 580 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → 𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))))
24233adant3 1132 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))))
2520metdsre 24758 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ)
26 frn 6663 . . . 4 (𝐹:𝑋⟶ℝ → ran 𝐹 ⊆ ℝ)
276mopntopon 24343 . . . . . 6 ((dist‘ℝ*𝑠) ∈ (∞Met‘ℝ*) → (MetOpen‘(dist‘ℝ*𝑠)) ∈ (TopOn‘ℝ*))
283, 27ax-mp 5 . . . . 5 (MetOpen‘(dist‘ℝ*𝑠)) ∈ (TopOn‘ℝ*)
29 cnrest2 23189 . . . . 5 (((MetOpen‘(dist‘ℝ*𝑠)) ∈ (TopOn‘ℝ*) ∧ ran 𝐹 ⊆ ℝ ∧ ℝ ⊆ ℝ*) → (𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))) ↔ 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ))))
3028, 4, 29mp3an13 1454 . . . 4 (ran 𝐹 ⊆ ℝ → (𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))) ↔ 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ))))
3125, 26, 303syl 18 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))) ↔ 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ))))
3224, 31mpbid 232 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)))
3318, 32sselid 3935 1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3905  c0 4286  cmpt 5176   × cxp 5621  ran crn 5624  cres 5625  wf 6482  cfv 6486  (class class class)co 7353  infcinf 9350  cr 11027  *cxr 11167   < clt 11168  (,)cioo 13266  distcds 17188  t crest 17342  TopOpenctopn 17343  topGenctg 17359  *𝑠cxrs 17422  ∞Metcxmet 21264  Metcmet 21265  MetOpencmopn 21269  fldccnfld 21279  Topctop 22796  TopOnctopon 22813   Cn ccn 23127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-ec 8634  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-icc 13273  df-fz 13429  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-starv 17194  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-rest 17344  df-topn 17345  df-topgen 17365  df-xrs 17424  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cn 23130  df-cnp 23131  df-xms 24224  df-ms 24225
This theorem is referenced by:  lebnumlem2  24877
  Copyright terms: Public domain W3C validator