![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metdscn2 | Structured version Visualization version GIF version |
Description: The function 𝐹 which gives the distance from a point to a nonempty set in a metric space is a continuous function into the topology of the complex numbers. (Contributed by Mario Carneiro, 5-Sep-2015.) |
Ref | Expression |
---|---|
metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
metdscn.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
metdscn2.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
metdscn2 | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . . . . . 7 ⊢ (dist‘ℝ*𝑠) = (dist‘ℝ*𝑠) | |
2 | 1 | xrsdsre 22990 | . . . . . 6 ⊢ ((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) |
3 | 1 | xrsxmet 22989 | . . . . . . 7 ⊢ (dist‘ℝ*𝑠) ∈ (∞Met‘ℝ*) |
4 | ressxr 10407 | . . . . . . 7 ⊢ ℝ ⊆ ℝ* | |
5 | eqid 2825 | . . . . . . . 8 ⊢ ((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)) = ((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)) | |
6 | eqid 2825 | . . . . . . . 8 ⊢ (MetOpen‘(dist‘ℝ*𝑠)) = (MetOpen‘(dist‘ℝ*𝑠)) | |
7 | eqid 2825 | . . . . . . . 8 ⊢ (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ))) = (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ))) | |
8 | 5, 6, 7 | metrest 22706 | . . . . . . 7 ⊢ (((dist‘ℝ*𝑠) ∈ (∞Met‘ℝ*) ∧ ℝ ⊆ ℝ*) → ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) = (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)))) |
9 | 3, 4, 8 | mp2an 683 | . . . . . 6 ⊢ ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) = (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ))) |
10 | 2, 9 | tgioo 22976 | . . . . 5 ⊢ (topGen‘ran (,)) = ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) |
11 | metdscn2.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
12 | 11 | tgioo2 22983 | . . . . 5 ⊢ (topGen‘ran (,)) = (𝐾 ↾t ℝ) |
13 | 10, 12 | eqtr3i 2851 | . . . 4 ⊢ ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) = (𝐾 ↾t ℝ) |
14 | 13 | oveq2i 6921 | . . 3 ⊢ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)) = (𝐽 Cn (𝐾 ↾t ℝ)) |
15 | 11 | cnfldtop 22964 | . . . 4 ⊢ 𝐾 ∈ Top |
16 | cnrest2r 21469 | . . . 4 ⊢ (𝐾 ∈ Top → (𝐽 Cn (𝐾 ↾t ℝ)) ⊆ (𝐽 Cn 𝐾)) | |
17 | 15, 16 | ax-mp 5 | . . 3 ⊢ (𝐽 Cn (𝐾 ↾t ℝ)) ⊆ (𝐽 Cn 𝐾) |
18 | 14, 17 | eqsstri 3860 | . 2 ⊢ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)) ⊆ (𝐽 Cn 𝐾) |
19 | metxmet 22516 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
20 | metdscn.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
21 | metdscn.j | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
22 | 20, 21, 1, 6 | metdscn 23036 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠)))) |
23 | 19, 22 | sylan 575 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠)))) |
24 | 23 | 3adant3 1166 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠)))) |
25 | 20 | metdsre 23033 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ) |
26 | frn 6288 | . . . 4 ⊢ (𝐹:𝑋⟶ℝ → ran 𝐹 ⊆ ℝ) | |
27 | 6 | mopntopon 22621 | . . . . . 6 ⊢ ((dist‘ℝ*𝑠) ∈ (∞Met‘ℝ*) → (MetOpen‘(dist‘ℝ*𝑠)) ∈ (TopOn‘ℝ*)) |
28 | 3, 27 | ax-mp 5 | . . . . 5 ⊢ (MetOpen‘(dist‘ℝ*𝑠)) ∈ (TopOn‘ℝ*) |
29 | cnrest2 21468 | . . . . 5 ⊢ (((MetOpen‘(dist‘ℝ*𝑠)) ∈ (TopOn‘ℝ*) ∧ ran 𝐹 ⊆ ℝ ∧ ℝ ⊆ ℝ*) → (𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))) ↔ 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)))) | |
30 | 28, 4, 29 | mp3an13 1580 | . . . 4 ⊢ (ran 𝐹 ⊆ ℝ → (𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))) ↔ 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)))) |
31 | 25, 26, 30 | 3syl 18 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → (𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))) ↔ 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)))) |
32 | 24, 31 | mpbid 224 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ))) |
33 | 18, 32 | sseldi 3825 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 ⊆ wss 3798 ∅c0 4146 ↦ cmpt 4954 × cxp 5344 ran crn 5347 ↾ cres 5348 ⟶wf 6123 ‘cfv 6127 (class class class)co 6910 infcinf 8622 ℝcr 10258 ℝ*cxr 10397 < clt 10398 (,)cioo 12470 distcds 16321 ↾t crest 16441 TopOpenctopn 16442 topGenctg 16458 ℝ*𝑠cxrs 16520 ∞Metcxmet 20098 Metcmet 20099 MetOpencmopn 20103 ℂfldccnfld 20113 Topctop 21075 TopOnctopon 21092 Cn ccn 21406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-ec 8016 df-map 8129 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-fi 8592 df-sup 8623 df-inf 8624 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-uz 11976 df-q 12079 df-rp 12120 df-xneg 12239 df-xadd 12240 df-xmul 12241 df-ioo 12474 df-icc 12477 df-fz 12627 df-seq 13103 df-exp 13162 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-plusg 16325 df-mulr 16326 df-starv 16327 df-tset 16331 df-ple 16332 df-ds 16334 df-unif 16335 df-rest 16443 df-topn 16444 df-topgen 16464 df-xrs 16522 df-psmet 20105 df-xmet 20106 df-met 20107 df-bl 20108 df-mopn 20109 df-cnfld 20114 df-top 21076 df-topon 21093 df-topsp 21115 df-bases 21128 df-cn 21409 df-cnp 21410 df-xms 22502 df-ms 22503 |
This theorem is referenced by: lebnumlem2 23138 |
Copyright terms: Public domain | W3C validator |