MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdscn2 Structured version   Visualization version   GIF version

Theorem metdscn2 23441
Description: The function 𝐹 which gives the distance from a point to a nonempty set in a metric space is a continuous function into the topology of the complex numbers. (Contributed by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metdscn2.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
metdscn2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑦,𝐽   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐽(𝑥)   𝐾(𝑥,𝑦)

Proof of Theorem metdscn2
StepHypRef Expression
1 eqid 2820 . . . . . . 7 (dist‘ℝ*𝑠) = (dist‘ℝ*𝑠)
21xrsdsre 23394 . . . . . 6 ((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
31xrsxmet 23393 . . . . . . 7 (dist‘ℝ*𝑠) ∈ (∞Met‘ℝ*)
4 ressxr 10663 . . . . . . 7 ℝ ⊆ ℝ*
5 eqid 2820 . . . . . . . 8 ((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)) = ((dist‘ℝ*𝑠) ↾ (ℝ × ℝ))
6 eqid 2820 . . . . . . . 8 (MetOpen‘(dist‘ℝ*𝑠)) = (MetOpen‘(dist‘ℝ*𝑠))
7 eqid 2820 . . . . . . . 8 (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ))) = (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)))
85, 6, 7metrest 23110 . . . . . . 7 (((dist‘ℝ*𝑠) ∈ (∞Met‘ℝ*) ∧ ℝ ⊆ ℝ*) → ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) = (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ))))
93, 4, 8mp2an 690 . . . . . 6 ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) = (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)))
102, 9tgioo 23380 . . . . 5 (topGen‘ran (,)) = ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)
11 metdscn2.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
1211tgioo2 23387 . . . . 5 (topGen‘ran (,)) = (𝐾t ℝ)
1310, 12eqtr3i 2845 . . . 4 ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) = (𝐾t ℝ)
1413oveq2i 7144 . . 3 (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)) = (𝐽 Cn (𝐾t ℝ))
1511cnfldtop 23368 . . . 4 𝐾 ∈ Top
16 cnrest2r 21871 . . . 4 (𝐾 ∈ Top → (𝐽 Cn (𝐾t ℝ)) ⊆ (𝐽 Cn 𝐾))
1715, 16ax-mp 5 . . 3 (𝐽 Cn (𝐾t ℝ)) ⊆ (𝐽 Cn 𝐾)
1814, 17eqsstri 3980 . 2 (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)) ⊆ (𝐽 Cn 𝐾)
19 metxmet 22920 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
20 metdscn.f . . . . . 6 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
21 metdscn.j . . . . . 6 𝐽 = (MetOpen‘𝐷)
2220, 21, 1, 6metdscn 23440 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))))
2319, 22sylan 582 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → 𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))))
24233adant3 1128 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))))
2520metdsre 23437 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ)
26 frn 6496 . . . 4 (𝐹:𝑋⟶ℝ → ran 𝐹 ⊆ ℝ)
276mopntopon 23025 . . . . . 6 ((dist‘ℝ*𝑠) ∈ (∞Met‘ℝ*) → (MetOpen‘(dist‘ℝ*𝑠)) ∈ (TopOn‘ℝ*))
283, 27ax-mp 5 . . . . 5 (MetOpen‘(dist‘ℝ*𝑠)) ∈ (TopOn‘ℝ*)
29 cnrest2 21870 . . . . 5 (((MetOpen‘(dist‘ℝ*𝑠)) ∈ (TopOn‘ℝ*) ∧ ran 𝐹 ⊆ ℝ ∧ ℝ ⊆ ℝ*) → (𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))) ↔ 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ))))
3028, 4, 29mp3an13 1448 . . . 4 (ran 𝐹 ⊆ ℝ → (𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))) ↔ 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ))))
3125, 26, 303syl 18 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))) ↔ 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ))))
3224, 31mpbid 234 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)))
3318, 32sseldi 3944 1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1537  wcel 2114  wne 3006  wss 3913  c0 4269  cmpt 5122   × cxp 5529  ran crn 5532  cres 5533  wf 6327  cfv 6331  (class class class)co 7133  infcinf 8883  cr 10514  *cxr 10652   < clt 10653  (,)cioo 12717  distcds 16553  t crest 16673  TopOpenctopn 16674  topGenctg 16690  *𝑠cxrs 16752  ∞Metcxmet 20506  Metcmet 20507  MetOpencmopn 20511  fldccnfld 20521  Topctop 21477  TopOnctopon 21494   Cn ccn 21808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-oadd 8084  df-er 8267  df-ec 8269  df-map 8386  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-fi 8853  df-sup 8884  df-inf 8885  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-div 11276  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-7 11684  df-8 11685  df-9 11686  df-n0 11877  df-z 11961  df-dec 12078  df-uz 12223  df-q 12328  df-rp 12369  df-xneg 12486  df-xadd 12487  df-xmul 12488  df-ioo 12721  df-icc 12724  df-fz 12877  df-seq 13354  df-exp 13415  df-cj 14438  df-re 14439  df-im 14440  df-sqrt 14574  df-abs 14575  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-plusg 16557  df-mulr 16558  df-starv 16559  df-tset 16563  df-ple 16564  df-ds 16566  df-unif 16567  df-rest 16675  df-topn 16676  df-topgen 16696  df-xrs 16754  df-psmet 20513  df-xmet 20514  df-met 20515  df-bl 20516  df-mopn 20517  df-cnfld 20522  df-top 21478  df-topon 21495  df-topsp 21517  df-bases 21530  df-cn 21811  df-cnp 21812  df-xms 22906  df-ms 22907
This theorem is referenced by:  lebnumlem2  23546
  Copyright terms: Public domain W3C validator