MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdscn2 Structured version   Visualization version   GIF version

Theorem metdscn2 24879
Description: The function 𝐹 which gives the distance from a point to a nonempty set in a metric space is a continuous function into the topology of the complex numbers. (Contributed by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
metdscn.j 𝐽 = (MetOpen‘𝐷)
metdscn2.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
metdscn2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑦,𝐽   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐽(𝑥)   𝐾(𝑥,𝑦)

Proof of Theorem metdscn2
StepHypRef Expression
1 eqid 2737 . . . . . . 7 (dist‘ℝ*𝑠) = (dist‘ℝ*𝑠)
21xrsdsre 24832 . . . . . 6 ((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
31xrsxmet 24831 . . . . . . 7 (dist‘ℝ*𝑠) ∈ (∞Met‘ℝ*)
4 ressxr 11305 . . . . . . 7 ℝ ⊆ ℝ*
5 eqid 2737 . . . . . . . 8 ((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)) = ((dist‘ℝ*𝑠) ↾ (ℝ × ℝ))
6 eqid 2737 . . . . . . . 8 (MetOpen‘(dist‘ℝ*𝑠)) = (MetOpen‘(dist‘ℝ*𝑠))
7 eqid 2737 . . . . . . . 8 (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ))) = (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)))
85, 6, 7metrest 24537 . . . . . . 7 (((dist‘ℝ*𝑠) ∈ (∞Met‘ℝ*) ∧ ℝ ⊆ ℝ*) → ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) = (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ))))
93, 4, 8mp2an 692 . . . . . 6 ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) = (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)))
102, 9tgioo 24817 . . . . 5 (topGen‘ran (,)) = ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)
11 metdscn2.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
1211tgioo2 24824 . . . . 5 (topGen‘ran (,)) = (𝐾t ℝ)
1310, 12eqtr3i 2767 . . . 4 ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) = (𝐾t ℝ)
1413oveq2i 7442 . . 3 (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)) = (𝐽 Cn (𝐾t ℝ))
1511cnfldtop 24804 . . . 4 𝐾 ∈ Top
16 cnrest2r 23295 . . . 4 (𝐾 ∈ Top → (𝐽 Cn (𝐾t ℝ)) ⊆ (𝐽 Cn 𝐾))
1715, 16ax-mp 5 . . 3 (𝐽 Cn (𝐾t ℝ)) ⊆ (𝐽 Cn 𝐾)
1814, 17eqsstri 4030 . 2 (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)) ⊆ (𝐽 Cn 𝐾)
19 metxmet 24344 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
20 metdscn.f . . . . . 6 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
21 metdscn.j . . . . . 6 𝐽 = (MetOpen‘𝐷)
2220, 21, 1, 6metdscn 24878 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))))
2319, 22sylan 580 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋) → 𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))))
24233adant3 1133 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))))
2520metdsre 24875 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ)
26 frn 6743 . . . 4 (𝐹:𝑋⟶ℝ → ran 𝐹 ⊆ ℝ)
276mopntopon 24449 . . . . . 6 ((dist‘ℝ*𝑠) ∈ (∞Met‘ℝ*) → (MetOpen‘(dist‘ℝ*𝑠)) ∈ (TopOn‘ℝ*))
283, 27ax-mp 5 . . . . 5 (MetOpen‘(dist‘ℝ*𝑠)) ∈ (TopOn‘ℝ*)
29 cnrest2 23294 . . . . 5 (((MetOpen‘(dist‘ℝ*𝑠)) ∈ (TopOn‘ℝ*) ∧ ran 𝐹 ⊆ ℝ ∧ ℝ ⊆ ℝ*) → (𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))) ↔ 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ))))
3028, 4, 29mp3an13 1454 . . . 4 (ran 𝐹 ⊆ ℝ → (𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))) ↔ 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ))))
3125, 26, 303syl 18 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → (𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))) ↔ 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ))))
3224, 31mpbid 232 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)))
3318, 32sselid 3981 1 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆𝑋𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wss 3951  c0 4333  cmpt 5225   × cxp 5683  ran crn 5686  cres 5687  wf 6557  cfv 6561  (class class class)co 7431  infcinf 9481  cr 11154  *cxr 11294   < clt 11295  (,)cioo 13387  distcds 17306  t crest 17465  TopOpenctopn 17466  topGenctg 17482  *𝑠cxrs 17545  ∞Metcxmet 21349  Metcmet 21350  MetOpencmopn 21354  fldccnfld 21364  Topctop 22899  TopOnctopon 22916   Cn ccn 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-ec 8747  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-icc 13394  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-rest 17467  df-topn 17468  df-topgen 17488  df-xrs 17547  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cn 23235  df-cnp 23236  df-xms 24330  df-ms 24331
This theorem is referenced by:  lebnumlem2  24994
  Copyright terms: Public domain W3C validator