![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metdscn2 | Structured version Visualization version GIF version |
Description: The function 𝐹 which gives the distance from a point to a nonempty set in a metric space is a continuous function into the topology of the complex numbers. (Contributed by Mario Carneiro, 5-Sep-2015.) |
Ref | Expression |
---|---|
metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
metdscn.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
metdscn2.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
metdscn2 | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . . . . . 7 ⊢ (dist‘ℝ*𝑠) = (dist‘ℝ*𝑠) | |
2 | 1 | xrsdsre 24648 | . . . . . 6 ⊢ ((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) |
3 | 1 | xrsxmet 24647 | . . . . . . 7 ⊢ (dist‘ℝ*𝑠) ∈ (∞Met‘ℝ*) |
4 | ressxr 11255 | . . . . . . 7 ⊢ ℝ ⊆ ℝ* | |
5 | eqid 2724 | . . . . . . . 8 ⊢ ((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)) = ((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)) | |
6 | eqid 2724 | . . . . . . . 8 ⊢ (MetOpen‘(dist‘ℝ*𝑠)) = (MetOpen‘(dist‘ℝ*𝑠)) | |
7 | eqid 2724 | . . . . . . . 8 ⊢ (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ))) = (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ))) | |
8 | 5, 6, 7 | metrest 24355 | . . . . . . 7 ⊢ (((dist‘ℝ*𝑠) ∈ (∞Met‘ℝ*) ∧ ℝ ⊆ ℝ*) → ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) = (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)))) |
9 | 3, 4, 8 | mp2an 689 | . . . . . 6 ⊢ ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) = (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ))) |
10 | 2, 9 | tgioo 24634 | . . . . 5 ⊢ (topGen‘ran (,)) = ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) |
11 | metdscn2.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
12 | 11 | tgioo2 24641 | . . . . 5 ⊢ (topGen‘ran (,)) = (𝐾 ↾t ℝ) |
13 | 10, 12 | eqtr3i 2754 | . . . 4 ⊢ ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) = (𝐾 ↾t ℝ) |
14 | 13 | oveq2i 7412 | . . 3 ⊢ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)) = (𝐽 Cn (𝐾 ↾t ℝ)) |
15 | 11 | cnfldtop 24622 | . . . 4 ⊢ 𝐾 ∈ Top |
16 | cnrest2r 23113 | . . . 4 ⊢ (𝐾 ∈ Top → (𝐽 Cn (𝐾 ↾t ℝ)) ⊆ (𝐽 Cn 𝐾)) | |
17 | 15, 16 | ax-mp 5 | . . 3 ⊢ (𝐽 Cn (𝐾 ↾t ℝ)) ⊆ (𝐽 Cn 𝐾) |
18 | 14, 17 | eqsstri 4008 | . 2 ⊢ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)) ⊆ (𝐽 Cn 𝐾) |
19 | metxmet 24162 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
20 | metdscn.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
21 | metdscn.j | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
22 | 20, 21, 1, 6 | metdscn 24694 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠)))) |
23 | 19, 22 | sylan 579 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠)))) |
24 | 23 | 3adant3 1129 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠)))) |
25 | 20 | metdsre 24691 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ) |
26 | frn 6714 | . . . 4 ⊢ (𝐹:𝑋⟶ℝ → ran 𝐹 ⊆ ℝ) | |
27 | 6 | mopntopon 24267 | . . . . . 6 ⊢ ((dist‘ℝ*𝑠) ∈ (∞Met‘ℝ*) → (MetOpen‘(dist‘ℝ*𝑠)) ∈ (TopOn‘ℝ*)) |
28 | 3, 27 | ax-mp 5 | . . . . 5 ⊢ (MetOpen‘(dist‘ℝ*𝑠)) ∈ (TopOn‘ℝ*) |
29 | cnrest2 23112 | . . . . 5 ⊢ (((MetOpen‘(dist‘ℝ*𝑠)) ∈ (TopOn‘ℝ*) ∧ ran 𝐹 ⊆ ℝ ∧ ℝ ⊆ ℝ*) → (𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))) ↔ 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)))) | |
30 | 28, 4, 29 | mp3an13 1448 | . . . 4 ⊢ (ran 𝐹 ⊆ ℝ → (𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))) ↔ 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)))) |
31 | 25, 26, 30 | 3syl 18 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → (𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))) ↔ 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)))) |
32 | 24, 31 | mpbid 231 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ))) |
33 | 18, 32 | sselid 3972 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ⊆ wss 3940 ∅c0 4314 ↦ cmpt 5221 × cxp 5664 ran crn 5667 ↾ cres 5668 ⟶wf 6529 ‘cfv 6533 (class class class)co 7401 infcinf 9432 ℝcr 11105 ℝ*cxr 11244 < clt 11245 (,)cioo 13321 distcds 17205 ↾t crest 17365 TopOpenctopn 17366 topGenctg 17382 ℝ*𝑠cxrs 17445 ∞Metcxmet 21213 Metcmet 21214 MetOpencmopn 21218 ℂfldccnfld 21228 Topctop 22717 TopOnctopon 22734 Cn ccn 23050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-ec 8701 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fi 9402 df-sup 9433 df-inf 9434 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-q 12930 df-rp 12972 df-xneg 13089 df-xadd 13090 df-xmul 13091 df-ioo 13325 df-icc 13328 df-fz 13482 df-seq 13964 df-exp 14025 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-struct 17079 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-rest 17367 df-topn 17368 df-topgen 17388 df-xrs 17447 df-psmet 21220 df-xmet 21221 df-met 21222 df-bl 21223 df-mopn 21224 df-cnfld 21229 df-top 22718 df-topon 22735 df-topsp 22757 df-bases 22771 df-cn 23053 df-cnp 23054 df-xms 24148 df-ms 24149 |
This theorem is referenced by: lebnumlem2 24810 |
Copyright terms: Public domain | W3C validator |