Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > metdscn2 | Structured version Visualization version GIF version |
Description: The function 𝐹 which gives the distance from a point to a nonempty set in a metric space is a continuous function into the topology of the complex numbers. (Contributed by Mario Carneiro, 5-Sep-2015.) |
Ref | Expression |
---|---|
metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
metdscn.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
metdscn2.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
metdscn2 | ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . . 7 ⊢ (dist‘ℝ*𝑠) = (dist‘ℝ*𝑠) | |
2 | 1 | xrsdsre 23879 | . . . . . 6 ⊢ ((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) |
3 | 1 | xrsxmet 23878 | . . . . . . 7 ⊢ (dist‘ℝ*𝑠) ∈ (∞Met‘ℝ*) |
4 | ressxr 10950 | . . . . . . 7 ⊢ ℝ ⊆ ℝ* | |
5 | eqid 2738 | . . . . . . . 8 ⊢ ((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)) = ((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)) | |
6 | eqid 2738 | . . . . . . . 8 ⊢ (MetOpen‘(dist‘ℝ*𝑠)) = (MetOpen‘(dist‘ℝ*𝑠)) | |
7 | eqid 2738 | . . . . . . . 8 ⊢ (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ))) = (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ))) | |
8 | 5, 6, 7 | metrest 23586 | . . . . . . 7 ⊢ (((dist‘ℝ*𝑠) ∈ (∞Met‘ℝ*) ∧ ℝ ⊆ ℝ*) → ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) = (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ)))) |
9 | 3, 4, 8 | mp2an 688 | . . . . . 6 ⊢ ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) = (MetOpen‘((dist‘ℝ*𝑠) ↾ (ℝ × ℝ))) |
10 | 2, 9 | tgioo 23865 | . . . . 5 ⊢ (topGen‘ran (,)) = ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) |
11 | metdscn2.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
12 | 11 | tgioo2 23872 | . . . . 5 ⊢ (topGen‘ran (,)) = (𝐾 ↾t ℝ) |
13 | 10, 12 | eqtr3i 2768 | . . . 4 ⊢ ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ) = (𝐾 ↾t ℝ) |
14 | 13 | oveq2i 7266 | . . 3 ⊢ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)) = (𝐽 Cn (𝐾 ↾t ℝ)) |
15 | 11 | cnfldtop 23853 | . . . 4 ⊢ 𝐾 ∈ Top |
16 | cnrest2r 22346 | . . . 4 ⊢ (𝐾 ∈ Top → (𝐽 Cn (𝐾 ↾t ℝ)) ⊆ (𝐽 Cn 𝐾)) | |
17 | 15, 16 | ax-mp 5 | . . 3 ⊢ (𝐽 Cn (𝐾 ↾t ℝ)) ⊆ (𝐽 Cn 𝐾) |
18 | 14, 17 | eqsstri 3951 | . 2 ⊢ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)) ⊆ (𝐽 Cn 𝐾) |
19 | metxmet 23395 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
20 | metdscn.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
21 | metdscn.j | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
22 | 20, 21, 1, 6 | metdscn 23925 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠)))) |
23 | 19, 22 | sylan 579 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠)))) |
24 | 23 | 3adant3 1130 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠)))) |
25 | 20 | metdsre 23922 | . . . 4 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹:𝑋⟶ℝ) |
26 | frn 6591 | . . . 4 ⊢ (𝐹:𝑋⟶ℝ → ran 𝐹 ⊆ ℝ) | |
27 | 6 | mopntopon 23500 | . . . . . 6 ⊢ ((dist‘ℝ*𝑠) ∈ (∞Met‘ℝ*) → (MetOpen‘(dist‘ℝ*𝑠)) ∈ (TopOn‘ℝ*)) |
28 | 3, 27 | ax-mp 5 | . . . . 5 ⊢ (MetOpen‘(dist‘ℝ*𝑠)) ∈ (TopOn‘ℝ*) |
29 | cnrest2 22345 | . . . . 5 ⊢ (((MetOpen‘(dist‘ℝ*𝑠)) ∈ (TopOn‘ℝ*) ∧ ran 𝐹 ⊆ ℝ ∧ ℝ ⊆ ℝ*) → (𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))) ↔ 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)))) | |
30 | 28, 4, 29 | mp3an13 1450 | . . . 4 ⊢ (ran 𝐹 ⊆ ℝ → (𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))) ↔ 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)))) |
31 | 25, 26, 30 | 3syl 18 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → (𝐹 ∈ (𝐽 Cn (MetOpen‘(dist‘ℝ*𝑠))) ↔ 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ)))) |
32 | 24, 31 | mpbid 231 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn ((MetOpen‘(dist‘ℝ*𝑠)) ↾t ℝ))) |
33 | 18, 32 | sselid 3915 | 1 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ⊆ wss 3883 ∅c0 4253 ↦ cmpt 5153 × cxp 5578 ran crn 5581 ↾ cres 5582 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 infcinf 9130 ℝcr 10801 ℝ*cxr 10939 < clt 10940 (,)cioo 13008 distcds 16897 ↾t crest 17048 TopOpenctopn 17049 topGenctg 17065 ℝ*𝑠cxrs 17128 ∞Metcxmet 20495 Metcmet 20496 MetOpencmopn 20500 ℂfldccnfld 20510 Topctop 21950 TopOnctopon 21967 Cn ccn 22283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-ec 8458 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fi 9100 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-icc 13015 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-rest 17050 df-topn 17051 df-topgen 17071 df-xrs 17130 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cn 22286 df-cnp 22287 df-xms 23381 df-ms 23382 |
This theorem is referenced by: lebnumlem2 24031 |
Copyright terms: Public domain | W3C validator |