MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnnsubcl Structured version   Visualization version   GIF version

Theorem mulgnnsubcl 19104
Description: Closure of the group multiple (exponentiation) operation in a submagma. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b 𝐵 = (Base‘𝐺)
mulgnnsubcl.t · = (.g𝐺)
mulgnnsubcl.p + = (+g𝐺)
mulgnnsubcl.g (𝜑𝐺𝑉)
mulgnnsubcl.s (𝜑𝑆𝐵)
mulgnnsubcl.c ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
mulgnnsubcl ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦   𝑥, ·   𝑥,𝑋,𝑦
Allowed substitution hints:   · (𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem mulgnnsubcl
StepHypRef Expression
1 simp2 1138 . . 3 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → 𝑁 ∈ ℕ)
2 mulgnnsubcl.s . . . . 5 (𝜑𝑆𝐵)
323ad2ant1 1134 . . . 4 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → 𝑆𝐵)
4 simp3 1139 . . . 4 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → 𝑋𝑆)
53, 4sseldd 3984 . . 3 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → 𝑋𝐵)
6 mulgnnsubcl.b . . . 4 𝐵 = (Base‘𝐺)
7 mulgnnsubcl.p . . . 4 + = (+g𝐺)
8 mulgnnsubcl.t . . . 4 · = (.g𝐺)
9 eqid 2737 . . . 4 seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋}))
106, 7, 8, 9mulgnn 19093 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
111, 5, 10syl2anc 584 . 2 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
12 nnuz 12921 . . . 4 ℕ = (ℤ‘1)
131, 12eleqtrdi 2851 . . 3 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → 𝑁 ∈ (ℤ‘1))
14 elfznn 13593 . . . . 5 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
15 fvconst2g 7222 . . . . 5 ((𝑋𝑆𝑥 ∈ ℕ) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
164, 14, 15syl2an 596 . . . 4 (((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
17 simpl3 1194 . . . 4 (((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋𝑆)
1816, 17eqeltrd 2841 . . 3 (((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) ∈ 𝑆)
19 mulgnnsubcl.c . . . . 5 ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
20193expb 1121 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
21203ad2antl1 1186 . . 3 (((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2213, 18, 21seqcl 14063 . 2 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (seq1( + , (ℕ × {𝑋}))‘𝑁) ∈ 𝑆)
2311, 22eqeltrd 2841 1 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wss 3951  {csn 4626   × cxp 5683  cfv 6561  (class class class)co 7431  1c1 11156  cn 12266  cuz 12878  ...cfz 13547  seqcseq 14042  Basecbs 17247  +gcplusg 17297  .gcmg 19085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-seq 14043  df-mulg 19086
This theorem is referenced by:  mulgnn0subcl  19105  mulgsubcl  19106  mulgnncl  19107  xrsmulgzz  33011
  Copyright terms: Public domain W3C validator