| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgnnsubcl | Structured version Visualization version GIF version | ||
| Description: Closure of the group multiple (exponentiation) operation in a submagma. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| mulgnnsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnnsubcl.t | ⊢ · = (.g‘𝐺) |
| mulgnnsubcl.p | ⊢ + = (+g‘𝐺) |
| mulgnnsubcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| mulgnnsubcl.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| mulgnnsubcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
| Ref | Expression |
|---|---|
| mulgnnsubcl | ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → 𝑁 ∈ ℕ) | |
| 2 | mulgnnsubcl.s | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 3 | 2 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐵) |
| 4 | simp3 1138 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
| 5 | 3, 4 | sseldd 3947 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
| 6 | mulgnnsubcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 7 | mulgnnsubcl.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 8 | mulgnnsubcl.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 9 | eqid 2729 | . . . 4 ⊢ seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋})) | |
| 10 | 6, 7, 8, 9 | mulgnn 19007 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁)) |
| 11 | 1, 5, 10 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁)) |
| 12 | nnuz 12836 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
| 13 | 1, 12 | eleqtrdi 2838 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → 𝑁 ∈ (ℤ≥‘1)) |
| 14 | elfznn 13514 | . . . . 5 ⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ) | |
| 15 | fvconst2g 7176 | . . . . 5 ⊢ ((𝑋 ∈ 𝑆 ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝑋})‘𝑥) = 𝑋) | |
| 16 | 4, 14, 15 | syl2an 596 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = 𝑋) |
| 17 | simpl3 1194 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋 ∈ 𝑆) | |
| 18 | 16, 17 | eqeltrd 2828 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) ∈ 𝑆) |
| 19 | mulgnnsubcl.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) | |
| 20 | 19 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 21 | 20 | 3ad2antl1 1186 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 22 | 13, 18, 21 | seqcl 13987 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (seq1( + , (ℕ × {𝑋}))‘𝑁) ∈ 𝑆) |
| 23 | 11, 22 | eqeltrd 2828 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 {csn 4589 × cxp 5636 ‘cfv 6511 (class class class)co 7387 1c1 11069 ℕcn 12186 ℤ≥cuz 12793 ...cfz 13468 seqcseq 13966 Basecbs 17179 +gcplusg 17220 .gcmg 18999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-seq 13967 df-mulg 19000 |
| This theorem is referenced by: mulgnn0subcl 19019 mulgsubcl 19020 mulgnncl 19021 xrsmulgzz 32947 |
| Copyright terms: Public domain | W3C validator |