MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnnsubcl Structured version   Visualization version   GIF version

Theorem mulgnnsubcl 18965
Description: Closure of the group multiple (exponentiation) operation in a submagma. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b 𝐵 = (Base‘𝐺)
mulgnnsubcl.t · = (.g𝐺)
mulgnnsubcl.p + = (+g𝐺)
mulgnnsubcl.g (𝜑𝐺𝑉)
mulgnnsubcl.s (𝜑𝑆𝐵)
mulgnnsubcl.c ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
mulgnnsubcl ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦   𝑥, ·   𝑥,𝑋,𝑦
Allowed substitution hints:   · (𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem mulgnnsubcl
StepHypRef Expression
1 simp2 1137 . . 3 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → 𝑁 ∈ ℕ)
2 mulgnnsubcl.s . . . . 5 (𝜑𝑆𝐵)
323ad2ant1 1133 . . . 4 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → 𝑆𝐵)
4 simp3 1138 . . . 4 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → 𝑋𝑆)
53, 4sseldd 3936 . . 3 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → 𝑋𝐵)
6 mulgnnsubcl.b . . . 4 𝐵 = (Base‘𝐺)
7 mulgnnsubcl.p . . . 4 + = (+g𝐺)
8 mulgnnsubcl.t . . . 4 · = (.g𝐺)
9 eqid 2729 . . . 4 seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋}))
106, 7, 8, 9mulgnn 18954 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
111, 5, 10syl2anc 584 . 2 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
12 nnuz 12778 . . . 4 ℕ = (ℤ‘1)
131, 12eleqtrdi 2838 . . 3 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → 𝑁 ∈ (ℤ‘1))
14 elfznn 13456 . . . . 5 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
15 fvconst2g 7138 . . . . 5 ((𝑋𝑆𝑥 ∈ ℕ) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
164, 14, 15syl2an 596 . . . 4 (((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = 𝑋)
17 simpl3 1194 . . . 4 (((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋𝑆)
1816, 17eqeltrd 2828 . . 3 (((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) ∈ 𝑆)
19 mulgnnsubcl.c . . . . 5 ((𝜑𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
20193expb 1120 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
21203ad2antl1 1186 . . 3 (((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2213, 18, 21seqcl 13929 . 2 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (seq1( + , (ℕ × {𝑋}))‘𝑁) ∈ 𝑆)
2311, 22eqeltrd 2828 1 ((𝜑𝑁 ∈ ℕ ∧ 𝑋𝑆) → (𝑁 · 𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3903  {csn 4577   × cxp 5617  cfv 6482  (class class class)co 7349  1c1 11010  cn 12128  cuz 12735  ...cfz 13410  seqcseq 13908  Basecbs 17120  +gcplusg 17161  .gcmg 18946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-seq 13909  df-mulg 18947
This theorem is referenced by:  mulgnn0subcl  18966  mulgsubcl  18967  mulgnncl  18968  xrsmulgzz  32963
  Copyright terms: Public domain W3C validator