![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgnnsubcl | Structured version Visualization version GIF version |
Description: Closure of the group multiple (exponentiation) operation in a submagma. (Contributed by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
mulgnnsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgnnsubcl.t | ⊢ · = (.g‘𝐺) |
mulgnnsubcl.p | ⊢ + = (+g‘𝐺) |
mulgnnsubcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
mulgnnsubcl.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
mulgnnsubcl.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
Ref | Expression |
---|---|
mulgnnsubcl | ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1138 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → 𝑁 ∈ ℕ) | |
2 | mulgnnsubcl.s | . . . . 5 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
3 | 2 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → 𝑆 ⊆ 𝐵) |
4 | simp3 1139 | . . . 4 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝑆) | |
5 | 3, 4 | sseldd 3982 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → 𝑋 ∈ 𝐵) |
6 | mulgnnsubcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
7 | mulgnnsubcl.p | . . . 4 ⊢ + = (+g‘𝐺) | |
8 | mulgnnsubcl.t | . . . 4 ⊢ · = (.g‘𝐺) | |
9 | eqid 2733 | . . . 4 ⊢ seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋})) | |
10 | 6, 7, 8, 9 | mulgnn 18952 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁)) |
11 | 1, 5, 10 | syl2anc 585 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁)) |
12 | nnuz 12861 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
13 | 1, 12 | eleqtrdi 2844 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → 𝑁 ∈ (ℤ≥‘1)) |
14 | elfznn 13526 | . . . . 5 ⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ) | |
15 | fvconst2g 7198 | . . . . 5 ⊢ ((𝑋 ∈ 𝑆 ∧ 𝑥 ∈ ℕ) → ((ℕ × {𝑋})‘𝑥) = 𝑋) | |
16 | 4, 14, 15 | syl2an 597 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) = 𝑋) |
17 | simpl3 1194 | . . . 4 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ (1...𝑁)) → 𝑋 ∈ 𝑆) | |
18 | 16, 17 | eqeltrd 2834 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × {𝑋})‘𝑥) ∈ 𝑆) |
19 | mulgnnsubcl.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) | |
20 | 19 | 3expb 1121 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
21 | 20 | 3ad2antl1 1186 | . . 3 ⊢ (((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
22 | 13, 18, 21 | seqcl 13984 | . 2 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (seq1( + , (ℕ × {𝑋}))‘𝑁) ∈ 𝑆) |
23 | 11, 22 | eqeltrd 2834 | 1 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ⊆ wss 3947 {csn 4627 × cxp 5673 ‘cfv 6540 (class class class)co 7404 1c1 11107 ℕcn 12208 ℤ≥cuz 12818 ...cfz 13480 seqcseq 13962 Basecbs 17140 +gcplusg 17193 .gcmg 18944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-seq 13963 df-mulg 18945 |
This theorem is referenced by: mulgnn0subcl 18961 mulgsubcl 18962 mulgnncl 18963 xrsmulgzz 32157 |
Copyright terms: Public domain | W3C validator |