| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgnn | Structured version Visualization version GIF version | ||
| Description: Group multiple (exponentiation) operation at a positive integer. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnn.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnn.p | ⊢ + = (+g‘𝐺) |
| mulgnn.t | ⊢ · = (.g‘𝐺) |
| mulgnn.s | ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) |
| Ref | Expression |
|---|---|
| mulgnn | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝑆‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz 12526 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 2 | mulgnn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | mulgnn.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 4 | eqid 2729 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 5 | eqid 2729 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 6 | mulgnn.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 7 | mulgnn.s | . . . 4 ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) | |
| 8 | 2, 3, 4, 5, 6, 7 | mulgval 18979 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁))))) |
| 9 | 1, 8 | sylan 580 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁))))) |
| 10 | nnne0 12196 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
| 11 | 10 | neneqd 2930 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ¬ 𝑁 = 0) |
| 12 | 11 | iffalsed 4495 | . . . 4 ⊢ (𝑁 ∈ ℕ → if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁)))) = if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁)))) |
| 13 | nngt0 12193 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 14 | 13 | iftrued 4492 | . . . 4 ⊢ (𝑁 ∈ ℕ → if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁))) = (𝑆‘𝑁)) |
| 15 | 12, 14 | eqtrd 2764 | . . 3 ⊢ (𝑁 ∈ ℕ → if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁)))) = (𝑆‘𝑁)) |
| 16 | 15 | adantr 480 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁)))) = (𝑆‘𝑁)) |
| 17 | 9, 16 | eqtrd 2764 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝑆‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4484 {csn 4585 class class class wbr 5102 × cxp 5629 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 < clt 11184 -cneg 11382 ℕcn 12162 ℤcz 12505 seqcseq 13942 Basecbs 17155 +gcplusg 17196 0gc0g 17378 invgcminusg 18842 .gcmg 18975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-seq 13943 df-mulg 18976 |
| This theorem is referenced by: ressmulgnn 18984 ressmulgnnd 18986 mulgnngsum 18987 mulg1 18989 mulgnnp1 18990 mulgnegnn 18992 mulgnnsubcl 18994 mulgnn0z 19009 mulgnndir 19011 submmulg 19026 subgmulg 19048 mulgnn0di 19731 gsumconst 19840 |
| Copyright terms: Public domain | W3C validator |