MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn Structured version   Visualization version   GIF version

Theorem mulgnn 19058
Description: Group multiple (exponentiation) operation at a positive integer. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnn.b 𝐵 = (Base‘𝐺)
mulgnn.p + = (+g𝐺)
mulgnn.t · = (.g𝐺)
mulgnn.s 𝑆 = seq1( + , (ℕ × {𝑋}))
Assertion
Ref Expression
mulgnn ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (𝑆𝑁))

Proof of Theorem mulgnn
StepHypRef Expression
1 nnz 12609 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2 mulgnn.b . . . 4 𝐵 = (Base‘𝐺)
3 mulgnn.p . . . 4 + = (+g𝐺)
4 eqid 2735 . . . 4 (0g𝐺) = (0g𝐺)
5 eqid 2735 . . . 4 (invg𝐺) = (invg𝐺)
6 mulgnn.t . . . 4 · = (.g𝐺)
7 mulgnn.s . . . 4 𝑆 = seq1( + , (ℕ × {𝑋}))
82, 3, 4, 5, 6, 7mulgval 19054 . . 3 ((𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (𝑆𝑁), ((invg𝐺)‘(𝑆‘-𝑁)))))
91, 8sylan 580 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (𝑆𝑁), ((invg𝐺)‘(𝑆‘-𝑁)))))
10 nnne0 12274 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1110neneqd 2937 . . . . 5 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
1211iffalsed 4511 . . . 4 (𝑁 ∈ ℕ → if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (𝑆𝑁), ((invg𝐺)‘(𝑆‘-𝑁)))) = if(0 < 𝑁, (𝑆𝑁), ((invg𝐺)‘(𝑆‘-𝑁))))
13 nngt0 12271 . . . . 5 (𝑁 ∈ ℕ → 0 < 𝑁)
1413iftrued 4508 . . . 4 (𝑁 ∈ ℕ → if(0 < 𝑁, (𝑆𝑁), ((invg𝐺)‘(𝑆‘-𝑁))) = (𝑆𝑁))
1512, 14eqtrd 2770 . . 3 (𝑁 ∈ ℕ → if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (𝑆𝑁), ((invg𝐺)‘(𝑆‘-𝑁)))) = (𝑆𝑁))
1615adantr 480 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (𝑆𝑁), ((invg𝐺)‘(𝑆‘-𝑁)))) = (𝑆𝑁))
179, 16eqtrd 2770 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (𝑆𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  ifcif 4500  {csn 4601   class class class wbr 5119   × cxp 5652  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   < clt 11269  -cneg 11467  cn 12240  cz 12588  seqcseq 14019  Basecbs 17228  +gcplusg 17271  0gc0g 17453  invgcminusg 18917  .gcmg 19050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-seq 14020  df-mulg 19051
This theorem is referenced by:  ressmulgnn  19059  ressmulgnnd  19061  mulgnngsum  19062  mulg1  19064  mulgnnp1  19065  mulgnegnn  19067  mulgnnsubcl  19069  mulgnn0z  19084  mulgnndir  19086  submmulg  19101  subgmulg  19123  mulgnn0di  19806  gsumconst  19915
  Copyright terms: Public domain W3C validator