MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn Structured version   Visualization version   GIF version

Theorem mulgnn 18973
Description: Group multiple (exponentiation) operation at a positive integer. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnn.b 𝐵 = (Base‘𝐺)
mulgnn.p + = (+g𝐺)
mulgnn.t · = (.g𝐺)
mulgnn.s 𝑆 = seq1( + , (ℕ × {𝑋}))
Assertion
Ref Expression
mulgnn ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (𝑆𝑁))

Proof of Theorem mulgnn
StepHypRef Expression
1 nnz 12511 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2 mulgnn.b . . . 4 𝐵 = (Base‘𝐺)
3 mulgnn.p . . . 4 + = (+g𝐺)
4 eqid 2729 . . . 4 (0g𝐺) = (0g𝐺)
5 eqid 2729 . . . 4 (invg𝐺) = (invg𝐺)
6 mulgnn.t . . . 4 · = (.g𝐺)
7 mulgnn.s . . . 4 𝑆 = seq1( + , (ℕ × {𝑋}))
82, 3, 4, 5, 6, 7mulgval 18969 . . 3 ((𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (𝑆𝑁), ((invg𝐺)‘(𝑆‘-𝑁)))))
91, 8sylan 580 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (𝑆𝑁), ((invg𝐺)‘(𝑆‘-𝑁)))))
10 nnne0 12181 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1110neneqd 2930 . . . . 5 (𝑁 ∈ ℕ → ¬ 𝑁 = 0)
1211iffalsed 4489 . . . 4 (𝑁 ∈ ℕ → if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (𝑆𝑁), ((invg𝐺)‘(𝑆‘-𝑁)))) = if(0 < 𝑁, (𝑆𝑁), ((invg𝐺)‘(𝑆‘-𝑁))))
13 nngt0 12178 . . . . 5 (𝑁 ∈ ℕ → 0 < 𝑁)
1413iftrued 4486 . . . 4 (𝑁 ∈ ℕ → if(0 < 𝑁, (𝑆𝑁), ((invg𝐺)‘(𝑆‘-𝑁))) = (𝑆𝑁))
1512, 14eqtrd 2764 . . 3 (𝑁 ∈ ℕ → if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (𝑆𝑁), ((invg𝐺)‘(𝑆‘-𝑁)))) = (𝑆𝑁))
1615adantr 480 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → if(𝑁 = 0, (0g𝐺), if(0 < 𝑁, (𝑆𝑁), ((invg𝐺)‘(𝑆‘-𝑁)))) = (𝑆𝑁))
179, 16eqtrd 2764 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (𝑆𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4478  {csn 4579   class class class wbr 5095   × cxp 5621  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029   < clt 11168  -cneg 11367  cn 12147  cz 12490  seqcseq 13927  Basecbs 17139  +gcplusg 17180  0gc0g 17362  invgcminusg 18832  .gcmg 18965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-n0 12404  df-z 12491  df-uz 12755  df-seq 13928  df-mulg 18966
This theorem is referenced by:  ressmulgnn  18974  ressmulgnnd  18976  mulgnngsum  18977  mulg1  18979  mulgnnp1  18980  mulgnegnn  18982  mulgnnsubcl  18984  mulgnn0z  18999  mulgnndir  19001  submmulg  19016  subgmulg  19038  mulgnn0di  19723  gsumconst  19832
  Copyright terms: Public domain W3C validator