| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgnn | Structured version Visualization version GIF version | ||
| Description: Group multiple (exponentiation) operation at a positive integer. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnn.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnn.p | ⊢ + = (+g‘𝐺) |
| mulgnn.t | ⊢ · = (.g‘𝐺) |
| mulgnn.s | ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) |
| Ref | Expression |
|---|---|
| mulgnn | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝑆‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz 12511 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 2 | mulgnn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | mulgnn.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 4 | eqid 2729 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 5 | eqid 2729 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 6 | mulgnn.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 7 | mulgnn.s | . . . 4 ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) | |
| 8 | 2, 3, 4, 5, 6, 7 | mulgval 18969 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁))))) |
| 9 | 1, 8 | sylan 580 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁))))) |
| 10 | nnne0 12181 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
| 11 | 10 | neneqd 2930 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ¬ 𝑁 = 0) |
| 12 | 11 | iffalsed 4489 | . . . 4 ⊢ (𝑁 ∈ ℕ → if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁)))) = if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁)))) |
| 13 | nngt0 12178 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 14 | 13 | iftrued 4486 | . . . 4 ⊢ (𝑁 ∈ ℕ → if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁))) = (𝑆‘𝑁)) |
| 15 | 12, 14 | eqtrd 2764 | . . 3 ⊢ (𝑁 ∈ ℕ → if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁)))) = (𝑆‘𝑁)) |
| 16 | 15 | adantr 480 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁)))) = (𝑆‘𝑁)) |
| 17 | 9, 16 | eqtrd 2764 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝑆‘𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4478 {csn 4579 class class class wbr 5095 × cxp 5621 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 < clt 11168 -cneg 11367 ℕcn 12147 ℤcz 12490 seqcseq 13927 Basecbs 17139 +gcplusg 17180 0gc0g 17362 invgcminusg 18832 .gcmg 18965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-n0 12404 df-z 12491 df-uz 12755 df-seq 13928 df-mulg 18966 |
| This theorem is referenced by: ressmulgnn 18974 ressmulgnnd 18976 mulgnngsum 18977 mulg1 18979 mulgnnp1 18980 mulgnegnn 18982 mulgnnsubcl 18984 mulgnn0z 18999 mulgnndir 19001 submmulg 19016 subgmulg 19038 mulgnn0di 19723 gsumconst 19832 |
| Copyright terms: Public domain | W3C validator |