![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgnn | Structured version Visualization version GIF version |
Description: Group multiple (exponentiation) operation at a positive integer. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulgnn.b | โข ๐ต = (Baseโ๐บ) |
mulgnn.p | โข + = (+gโ๐บ) |
mulgnn.t | โข ยท = (.gโ๐บ) |
mulgnn.s | โข ๐ = seq1( + , (โ ร {๐})) |
Ref | Expression |
---|---|
mulgnn | โข ((๐ โ โ โง ๐ โ ๐ต) โ (๐ ยท ๐) = (๐โ๐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 12579 | . . 3 โข (๐ โ โ โ ๐ โ โค) | |
2 | mulgnn.b | . . . 4 โข ๐ต = (Baseโ๐บ) | |
3 | mulgnn.p | . . . 4 โข + = (+gโ๐บ) | |
4 | eqid 2733 | . . . 4 โข (0gโ๐บ) = (0gโ๐บ) | |
5 | eqid 2733 | . . . 4 โข (invgโ๐บ) = (invgโ๐บ) | |
6 | mulgnn.t | . . . 4 โข ยท = (.gโ๐บ) | |
7 | mulgnn.s | . . . 4 โข ๐ = seq1( + , (โ ร {๐})) | |
8 | 2, 3, 4, 5, 6, 7 | mulgval 18954 | . . 3 โข ((๐ โ โค โง ๐ โ ๐ต) โ (๐ ยท ๐) = if(๐ = 0, (0gโ๐บ), if(0 < ๐, (๐โ๐), ((invgโ๐บ)โ(๐โ-๐))))) |
9 | 1, 8 | sylan 581 | . 2 โข ((๐ โ โ โง ๐ โ ๐ต) โ (๐ ยท ๐) = if(๐ = 0, (0gโ๐บ), if(0 < ๐, (๐โ๐), ((invgโ๐บ)โ(๐โ-๐))))) |
10 | nnne0 12246 | . . . . . 6 โข (๐ โ โ โ ๐ โ 0) | |
11 | 10 | neneqd 2946 | . . . . 5 โข (๐ โ โ โ ยฌ ๐ = 0) |
12 | 11 | iffalsed 4540 | . . . 4 โข (๐ โ โ โ if(๐ = 0, (0gโ๐บ), if(0 < ๐, (๐โ๐), ((invgโ๐บ)โ(๐โ-๐)))) = if(0 < ๐, (๐โ๐), ((invgโ๐บ)โ(๐โ-๐)))) |
13 | nngt0 12243 | . . . . 5 โข (๐ โ โ โ 0 < ๐) | |
14 | 13 | iftrued 4537 | . . . 4 โข (๐ โ โ โ if(0 < ๐, (๐โ๐), ((invgโ๐บ)โ(๐โ-๐))) = (๐โ๐)) |
15 | 12, 14 | eqtrd 2773 | . . 3 โข (๐ โ โ โ if(๐ = 0, (0gโ๐บ), if(0 < ๐, (๐โ๐), ((invgโ๐บ)โ(๐โ-๐)))) = (๐โ๐)) |
16 | 15 | adantr 482 | . 2 โข ((๐ โ โ โง ๐ โ ๐ต) โ if(๐ = 0, (0gโ๐บ), if(0 < ๐, (๐โ๐), ((invgโ๐บ)โ(๐โ-๐)))) = (๐โ๐)) |
17 | 9, 16 | eqtrd 2773 | 1 โข ((๐ โ โ โง ๐ โ ๐ต) โ (๐ ยท ๐) = (๐โ๐)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 397 = wceq 1542 โ wcel 2107 ifcif 4529 {csn 4629 class class class wbr 5149 ร cxp 5675 โcfv 6544 (class class class)co 7409 0cc0 11110 1c1 11111 < clt 11248 -cneg 11445 โcn 12212 โคcz 12558 seqcseq 13966 Basecbs 17144 +gcplusg 17197 0gc0g 17385 invgcminusg 18820 .gcmg 18950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-seq 13967 df-mulg 18951 |
This theorem is referenced by: mulgnngsum 18959 mulg1 18961 mulgnnp1 18962 mulgnegnn 18964 mulgnnsubcl 18966 mulgnn0z 18981 mulgnndir 18983 submmulg 18998 subgmulg 19020 mulgnn0di 19693 gsumconst 19802 ressmulgnn 32184 |
Copyright terms: Public domain | W3C validator |