Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulgnn | Structured version Visualization version GIF version |
Description: Group multiple (exponentiation) operation at a positive integer. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulgnn.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgnn.p | ⊢ + = (+g‘𝐺) |
mulgnn.t | ⊢ · = (.g‘𝐺) |
mulgnn.s | ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) |
Ref | Expression |
---|---|
mulgnn | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝑆‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 12452 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
2 | mulgnn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | mulgnn.p | . . . 4 ⊢ + = (+g‘𝐺) | |
4 | eqid 2737 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
5 | eqid 2737 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
6 | mulgnn.t | . . . 4 ⊢ · = (.g‘𝐺) | |
7 | mulgnn.s | . . . 4 ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) | |
8 | 2, 3, 4, 5, 6, 7 | mulgval 18805 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁))))) |
9 | 1, 8 | sylan 581 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁))))) |
10 | nnne0 12117 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
11 | 10 | neneqd 2946 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ¬ 𝑁 = 0) |
12 | 11 | iffalsed 4492 | . . . 4 ⊢ (𝑁 ∈ ℕ → if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁)))) = if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁)))) |
13 | nngt0 12114 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
14 | 13 | iftrued 4489 | . . . 4 ⊢ (𝑁 ∈ ℕ → if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁))) = (𝑆‘𝑁)) |
15 | 12, 14 | eqtrd 2777 | . . 3 ⊢ (𝑁 ∈ ℕ → if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁)))) = (𝑆‘𝑁)) |
16 | 15 | adantr 482 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁)))) = (𝑆‘𝑁)) |
17 | 9, 16 | eqtrd 2777 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝑆‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ifcif 4481 {csn 4581 class class class wbr 5100 × cxp 5625 ‘cfv 6488 (class class class)co 7346 0cc0 10981 1c1 10982 < clt 11119 -cneg 11316 ℕcn 12083 ℤcz 12429 seqcseq 13831 Basecbs 17014 +gcplusg 17064 0gc0g 17252 invgcminusg 18679 .gcmg 18801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 ax-cnex 11037 ax-resscn 11038 ax-1cn 11039 ax-icn 11040 ax-addcl 11041 ax-addrcl 11042 ax-mulcl 11043 ax-mulrcl 11044 ax-mulcom 11045 ax-addass 11046 ax-mulass 11047 ax-distr 11048 ax-i2m1 11049 ax-1ne0 11050 ax-1rid 11051 ax-rnegex 11052 ax-rrecex 11053 ax-cnre 11054 ax-pre-lttri 11055 ax-pre-lttrn 11056 ax-pre-ltadd 11057 ax-pre-mulgt0 11058 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3924 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-tr 5218 df-id 5525 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5582 df-we 5584 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-pred 6246 df-ord 6313 df-on 6314 df-lim 6315 df-suc 6316 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7790 df-1st 7908 df-2nd 7909 df-frecs 8176 df-wrecs 8207 df-recs 8281 df-rdg 8320 df-er 8578 df-en 8814 df-dom 8815 df-sdom 8816 df-pnf 11121 df-mnf 11122 df-xr 11123 df-ltxr 11124 df-le 11125 df-sub 11317 df-neg 11318 df-nn 12084 df-n0 12344 df-z 12430 df-uz 12693 df-seq 13832 df-mulg 18802 |
This theorem is referenced by: mulgnngsum 18810 mulg1 18812 mulgnnp1 18813 mulgnegnn 18815 mulgnnsubcl 18817 mulgnn0z 18831 mulgnndir 18833 submmulg 18848 subgmulg 18870 mulgnn0di 19527 gsumconst 19634 ressmulgnn 31643 |
Copyright terms: Public domain | W3C validator |