Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulgnn | Structured version Visualization version GIF version |
Description: Group multiple (exponentiation) operation at a positive integer. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulgnn.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgnn.p | ⊢ + = (+g‘𝐺) |
mulgnn.t | ⊢ · = (.g‘𝐺) |
mulgnn.s | ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) |
Ref | Expression |
---|---|
mulgnn | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝑆‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 12342 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
2 | mulgnn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | mulgnn.p | . . . 4 ⊢ + = (+g‘𝐺) | |
4 | eqid 2738 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
5 | eqid 2738 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
6 | mulgnn.t | . . . 4 ⊢ · = (.g‘𝐺) | |
7 | mulgnn.s | . . . 4 ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) | |
8 | 2, 3, 4, 5, 6, 7 | mulgval 18704 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁))))) |
9 | 1, 8 | sylan 580 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁))))) |
10 | nnne0 12007 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
11 | 10 | neneqd 2948 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ¬ 𝑁 = 0) |
12 | 11 | iffalsed 4470 | . . . 4 ⊢ (𝑁 ∈ ℕ → if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁)))) = if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁)))) |
13 | nngt0 12004 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
14 | 13 | iftrued 4467 | . . . 4 ⊢ (𝑁 ∈ ℕ → if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁))) = (𝑆‘𝑁)) |
15 | 12, 14 | eqtrd 2778 | . . 3 ⊢ (𝑁 ∈ ℕ → if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁)))) = (𝑆‘𝑁)) |
16 | 15 | adantr 481 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁)))) = (𝑆‘𝑁)) |
17 | 9, 16 | eqtrd 2778 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝑆‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ifcif 4459 {csn 4561 class class class wbr 5074 × cxp 5587 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 < clt 11009 -cneg 11206 ℕcn 11973 ℤcz 12319 seqcseq 13721 Basecbs 16912 +gcplusg 16962 0gc0g 17150 invgcminusg 18578 .gcmg 18700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-seq 13722 df-mulg 18701 |
This theorem is referenced by: mulgnngsum 18709 mulg1 18711 mulgnnp1 18712 mulgnegnn 18714 mulgnnsubcl 18716 mulgnn0z 18730 mulgnndir 18732 submmulg 18747 subgmulg 18769 mulgnn0di 19427 gsumconst 19535 ressmulgnn 31292 |
Copyright terms: Public domain | W3C validator |