| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0zi | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| nn0zi.1 | ⊢ 𝑁 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0zi | ⊢ 𝑁 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssz 12494 | . 2 ⊢ ℕ0 ⊆ ℤ | |
| 2 | nn0zi.1 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3932 | 1 ⊢ 𝑁 ∈ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℕ0cn0 12384 ℤcz 12471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-i2m1 11077 ax-1ne0 11078 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 |
| This theorem is referenced by: le9lt10 12618 fz0to5un2tp 13534 expnass 14115 faclbnd4lem1 14200 efsep 16019 3dvdsdec 16243 3dvds2dec 16244 divalglem0 16304 divalglem2 16306 ndvdsi 16323 gcdaddmlem 16435 6lcm4e12 16527 phicl2 16679 dec2dvds 16975 dec5dvds2 16977 modxai 16980 mod2xnegi 16983 gcdi 16985 gcdmodi 16986 1259lem1 17042 1259lem2 17043 1259lem3 17044 1259lem4 17045 1259lem5 17046 2503lem1 17048 2503lem2 17049 2503lem3 17050 4001lem1 17052 4001lem2 17053 4001lem3 17054 4001lem4 17055 ppi1i 27076 ppi2i 27077 ppiublem1 27111 konigsberglem5 30200 dp2lt10 32825 dp2ltc 32828 ballotlemfelz 34465 hgt750lemd 34622 hgt750lem 34625 hgt750leme 34632 poimirlem26 37636 poimirlem28 37638 fmtno4prmfac 47566 31prm 47591 nfermltl2rev 47737 linevalexample 48390 ackval42 48691 |
| Copyright terms: Public domain | W3C validator |