| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0zi | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| nn0zi.1 | ⊢ 𝑁 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0zi | ⊢ 𝑁 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssz 12611 | . 2 ⊢ ℕ0 ⊆ ℤ | |
| 2 | nn0zi.1 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3955 | 1 ⊢ 𝑁 ∈ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ℕ0cn0 12501 ℤcz 12588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-i2m1 11197 ax-1ne0 11198 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 |
| This theorem is referenced by: le9lt10 12735 fz0to5un2tp 13648 expnass 14226 faclbnd4lem1 14311 efsep 16128 3dvdsdec 16351 3dvds2dec 16352 divalglem0 16412 divalglem2 16414 ndvdsi 16431 gcdaddmlem 16543 6lcm4e12 16635 phicl2 16787 dec2dvds 17083 dec5dvds2 17085 modxai 17088 mod2xnegi 17091 gcdi 17093 gcdmodi 17094 1259lem1 17150 1259lem2 17151 1259lem3 17152 1259lem4 17153 1259lem5 17154 2503lem1 17156 2503lem2 17157 2503lem3 17158 4001lem1 17160 4001lem2 17161 4001lem3 17162 4001lem4 17163 ppi1i 27130 ppi2i 27131 ppiublem1 27165 konigsberglem5 30237 dp2lt10 32858 dp2ltc 32861 ballotlemfelz 34523 hgt750lemd 34680 hgt750lem 34683 hgt750leme 34690 poimirlem26 37670 poimirlem28 37672 fmtno4prmfac 47586 31prm 47611 nfermltl2rev 47757 linevalexample 48371 ackval42 48676 |
| Copyright terms: Public domain | W3C validator |