MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0zi Structured version   Visualization version   GIF version

Theorem nn0zi 11996
Description: A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypothesis
Ref Expression
nn0zi.1 𝑁 ∈ ℕ0
Assertion
Ref Expression
nn0zi 𝑁 ∈ ℤ

Proof of Theorem nn0zi
StepHypRef Expression
1 nn0ssz 11992 . 2 0 ⊆ ℤ
2 nn0zi.1 . 2 𝑁 ∈ ℕ0
31, 2sselii 3968 1 𝑁 ∈ ℤ
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  0cn0 11886  cz 11970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-i2m1 10594  ax-1ne0 10595  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-ov 7151  df-om 7569  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971
This theorem is referenced by:  le9lt10  12114  expnass  13560  faclbnd4lem1  13643  efsep  15453  3dvdsdec  15671  3dvds2dec  15672  divalglem0  15734  divalglem2  15736  ndvdsi  15753  gcdaddmlem  15862  6lcm4e12  15950  phicl2  16095  dec2dvds  16389  dec5dvds2  16391  modxai  16394  mod2xnegi  16397  gcdi  16399  gcdmodi  16400  1259lem1  16454  1259lem2  16455  1259lem3  16456  1259lem4  16457  1259lem5  16458  2503lem1  16460  2503lem2  16461  2503lem3  16462  4001lem1  16464  4001lem2  16465  4001lem3  16466  4001lem4  16467  ppi1i  25662  ppi2i  25663  ppiublem1  25695  konigsberglem5  27952  dp2lt10  30477  dp2ltc  30480  ballotlemfelz  31637  hgt750lemd  31808  hgt750lem  31811  hgt750leme  31818  poimirlem26  34788  poimirlem28  34790  fmtno4prmfac  43569  31prm  43595  nfermltl2rev  43743  linevalexample  44285
  Copyright terms: Public domain W3C validator