Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0zi | Structured version Visualization version GIF version |
Description: A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
nn0zi.1 | ⊢ 𝑁 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0zi | ⊢ 𝑁 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssz 12027 | . 2 ⊢ ℕ0 ⊆ ℤ | |
2 | nn0zi.1 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
3 | 1, 2 | sselii 3885 | 1 ⊢ 𝑁 ∈ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2112 ℕ0cn0 11919 ℤcz 12005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5162 ax-nul 5169 ax-pr 5291 ax-un 7452 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-i2m1 10628 ax-1ne0 10629 ax-rnegex 10631 ax-rrecex 10632 ax-cnre 10633 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-ral 3073 df-rex 3074 df-reu 3075 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-iun 4878 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-ov 7146 df-om 7573 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-neg 10896 df-nn 11660 df-n0 11920 df-z 12006 |
This theorem is referenced by: le9lt10 12149 expnass 13605 faclbnd4lem1 13688 efsep 15496 3dvdsdec 15718 3dvds2dec 15719 divalglem0 15779 divalglem2 15781 ndvdsi 15798 gcdaddmlem 15908 6lcm4e12 15997 phicl2 16145 dec2dvds 16439 dec5dvds2 16441 modxai 16444 mod2xnegi 16447 gcdi 16449 gcdmodi 16450 1259lem1 16507 1259lem2 16508 1259lem3 16509 1259lem4 16510 1259lem5 16511 2503lem1 16513 2503lem2 16514 2503lem3 16515 4001lem1 16517 4001lem2 16518 4001lem3 16519 4001lem4 16520 ppi1i 25837 ppi2i 25838 ppiublem1 25870 konigsberglem5 28125 dp2lt10 30667 dp2ltc 30670 ballotlemfelz 31961 hgt750lemd 32132 hgt750lem 32135 hgt750leme 32142 poimirlem26 35348 poimirlem28 35350 fmtno4prmfac 44442 31prm 44467 nfermltl2rev 44613 linevalexample 45154 ackval42 45460 |
Copyright terms: Public domain | W3C validator |