MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0zi Structured version   Visualization version   GIF version

Theorem nn0zi 12587
Description: A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypothesis
Ref Expression
nn0zi.1 𝑁 ∈ ℕ0
Assertion
Ref Expression
nn0zi 𝑁 ∈ ℤ

Proof of Theorem nn0zi
StepHypRef Expression
1 nn0ssz 12581 . 2 0 ⊆ ℤ
2 nn0zi.1 . 2 𝑁 ∈ ℕ0
31, 2sselii 3980 1 𝑁 ∈ ℤ
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  0cn0 12472  cz 12558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-i2m1 11178  ax-1ne0 11179  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559
This theorem is referenced by:  le9lt10  12704  expnass  14172  faclbnd4lem1  14253  efsep  16053  3dvdsdec  16275  3dvds2dec  16276  divalglem0  16336  divalglem2  16338  ndvdsi  16355  gcdaddmlem  16465  6lcm4e12  16553  phicl2  16701  dec2dvds  16996  dec5dvds2  16998  modxai  17001  mod2xnegi  17004  gcdi  17006  gcdmodi  17007  1259lem1  17064  1259lem2  17065  1259lem3  17066  1259lem4  17067  1259lem5  17068  2503lem1  17070  2503lem2  17071  2503lem3  17072  4001lem1  17074  4001lem2  17075  4001lem3  17076  4001lem4  17077  ppi1i  26672  ppi2i  26673  ppiublem1  26705  konigsberglem5  29509  dp2lt10  32050  dp2ltc  32053  ballotlemfelz  33489  hgt750lemd  33660  hgt750lem  33663  hgt750leme  33670  poimirlem26  36514  poimirlem28  36516  fmtno4prmfac  46240  31prm  46265  nfermltl2rev  46411  linevalexample  47076  ackval42  47382
  Copyright terms: Public domain W3C validator