Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0zi | Structured version Visualization version GIF version |
Description: A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
nn0zi.1 | ⊢ 𝑁 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0zi | ⊢ 𝑁 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssz 12350 | . 2 ⊢ ℕ0 ⊆ ℤ | |
2 | nn0zi.1 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
3 | 1, 2 | sselii 3919 | 1 ⊢ 𝑁 ∈ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ℕ0cn0 12242 ℤcz 12328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 ax-un 7597 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-i2m1 10948 ax-1ne0 10949 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-ov 7287 df-om 7722 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-neg 11217 df-nn 11983 df-n0 12243 df-z 12329 |
This theorem is referenced by: le9lt10 12473 expnass 13933 faclbnd4lem1 14016 efsep 15828 3dvdsdec 16050 3dvds2dec 16051 divalglem0 16111 divalglem2 16113 ndvdsi 16130 gcdaddmlem 16240 6lcm4e12 16330 phicl2 16478 dec2dvds 16773 dec5dvds2 16775 modxai 16778 mod2xnegi 16781 gcdi 16783 gcdmodi 16784 1259lem1 16841 1259lem2 16842 1259lem3 16843 1259lem4 16844 1259lem5 16845 2503lem1 16847 2503lem2 16848 2503lem3 16849 4001lem1 16851 4001lem2 16852 4001lem3 16853 4001lem4 16854 ppi1i 26326 ppi2i 26327 ppiublem1 26359 konigsberglem5 28629 dp2lt10 31167 dp2ltc 31170 ballotlemfelz 32466 hgt750lemd 32637 hgt750lem 32640 hgt750leme 32647 poimirlem26 35812 poimirlem28 35814 fmtno4prmfac 45035 31prm 45060 nfermltl2rev 45206 linevalexample 45747 ackval42 46053 |
Copyright terms: Public domain | W3C validator |