MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0zi Structured version   Visualization version   GIF version

Theorem nn0zi 12642
Description: A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypothesis
Ref Expression
nn0zi.1 𝑁 ∈ ℕ0
Assertion
Ref Expression
nn0zi 𝑁 ∈ ℤ

Proof of Theorem nn0zi
StepHypRef Expression
1 nn0ssz 12636 . 2 0 ⊆ ℤ
2 nn0zi.1 . 2 𝑁 ∈ ℕ0
31, 2sselii 3980 1 𝑁 ∈ ℤ
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  0cn0 12526  cz 12613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-i2m1 11223  ax-1ne0 11224  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614
This theorem is referenced by:  le9lt10  12760  fz0to5un2tp  13671  expnass  14247  faclbnd4lem1  14332  efsep  16146  3dvdsdec  16369  3dvds2dec  16370  divalglem0  16430  divalglem2  16432  ndvdsi  16449  gcdaddmlem  16561  6lcm4e12  16653  phicl2  16805  dec2dvds  17101  dec5dvds2  17103  modxai  17106  mod2xnegi  17109  gcdi  17111  gcdmodi  17112  1259lem1  17168  1259lem2  17169  1259lem3  17170  1259lem4  17171  1259lem5  17172  2503lem1  17174  2503lem2  17175  2503lem3  17176  4001lem1  17178  4001lem2  17179  4001lem3  17180  4001lem4  17181  ppi1i  27211  ppi2i  27212  ppiublem1  27246  konigsberglem5  30275  dp2lt10  32866  dp2ltc  32869  ballotlemfelz  34493  hgt750lemd  34663  hgt750lem  34666  hgt750leme  34673  poimirlem26  37653  poimirlem28  37655  fmtno4prmfac  47559  31prm  47584  nfermltl2rev  47730  linevalexample  48312  ackval42  48617
  Copyright terms: Public domain W3C validator