![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0zi | Structured version Visualization version GIF version |
Description: A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
nn0zi.1 | ⊢ 𝑁 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0zi | ⊢ 𝑁 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssz 12634 | . 2 ⊢ ℕ0 ⊆ ℤ | |
2 | nn0zi.1 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
3 | 1, 2 | sselii 3992 | 1 ⊢ 𝑁 ∈ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ℕ0cn0 12524 ℤcz 12611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-i2m1 11221 ax-1ne0 11222 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 |
This theorem is referenced by: le9lt10 12758 fz0to5un2tp 13668 expnass 14244 faclbnd4lem1 14329 efsep 16143 3dvdsdec 16366 3dvds2dec 16367 divalglem0 16427 divalglem2 16429 ndvdsi 16446 gcdaddmlem 16558 6lcm4e12 16650 phicl2 16802 dec2dvds 17097 dec5dvds2 17099 modxai 17102 mod2xnegi 17105 gcdi 17107 gcdmodi 17108 1259lem1 17165 1259lem2 17166 1259lem3 17167 1259lem4 17168 1259lem5 17169 2503lem1 17171 2503lem2 17172 2503lem3 17173 4001lem1 17175 4001lem2 17176 4001lem3 17177 4001lem4 17178 ppi1i 27226 ppi2i 27227 ppiublem1 27261 konigsberglem5 30285 dp2lt10 32851 dp2ltc 32854 ballotlemfelz 34472 hgt750lemd 34642 hgt750lem 34645 hgt750leme 34652 poimirlem26 37633 poimirlem28 37635 fmtno4prmfac 47497 31prm 47522 nfermltl2rev 47668 linevalexample 48241 ackval42 48546 |
Copyright terms: Public domain | W3C validator |