| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0zi | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| nn0zi.1 | ⊢ 𝑁 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0zi | ⊢ 𝑁 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssz 12603 | . 2 ⊢ ℕ0 ⊆ ℤ | |
| 2 | nn0zi.1 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3953 | 1 ⊢ 𝑁 ∈ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 ℕ0cn0 12493 ℤcz 12580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 ax-un 7723 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-i2m1 11189 ax-1ne0 11190 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-om 7856 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-neg 11461 df-nn 12233 df-n0 12494 df-z 12581 |
| This theorem is referenced by: le9lt10 12727 fz0to5un2tp 13637 expnass 14214 faclbnd4lem1 14299 efsep 16113 3dvdsdec 16336 3dvds2dec 16337 divalglem0 16397 divalglem2 16399 ndvdsi 16416 gcdaddmlem 16528 6lcm4e12 16620 phicl2 16772 dec2dvds 17068 dec5dvds2 17070 modxai 17073 mod2xnegi 17076 gcdi 17078 gcdmodi 17079 1259lem1 17135 1259lem2 17136 1259lem3 17137 1259lem4 17138 1259lem5 17139 2503lem1 17141 2503lem2 17142 2503lem3 17143 4001lem1 17145 4001lem2 17146 4001lem3 17147 4001lem4 17148 ppi1i 27114 ppi2i 27115 ppiublem1 27149 konigsberglem5 30169 dp2lt10 32776 dp2ltc 32779 ballotlemfelz 34431 hgt750lemd 34601 hgt750lem 34604 hgt750leme 34611 poimirlem26 37591 poimirlem28 37593 fmtno4prmfac 47504 31prm 47529 nfermltl2rev 47675 linevalexample 48257 ackval42 48562 |
| Copyright terms: Public domain | W3C validator |