| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0zi | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| nn0zi.1 | ⊢ 𝑁 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0zi | ⊢ 𝑁 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssz 12552 | . 2 ⊢ ℕ0 ⊆ ℤ | |
| 2 | nn0zi.1 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3943 | 1 ⊢ 𝑁 ∈ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℕ0cn0 12442 ℤcz 12529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-i2m1 11136 ax-1ne0 11137 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 |
| This theorem is referenced by: le9lt10 12676 fz0to5un2tp 13592 expnass 14173 faclbnd4lem1 14258 efsep 16078 3dvdsdec 16302 3dvds2dec 16303 divalglem0 16363 divalglem2 16365 ndvdsi 16382 gcdaddmlem 16494 6lcm4e12 16586 phicl2 16738 dec2dvds 17034 dec5dvds2 17036 modxai 17039 mod2xnegi 17042 gcdi 17044 gcdmodi 17045 1259lem1 17101 1259lem2 17102 1259lem3 17103 1259lem4 17104 1259lem5 17105 2503lem1 17107 2503lem2 17108 2503lem3 17109 4001lem1 17111 4001lem2 17112 4001lem3 17113 4001lem4 17114 ppi1i 27078 ppi2i 27079 ppiublem1 27113 konigsberglem5 30185 dp2lt10 32804 dp2ltc 32807 ballotlemfelz 34482 hgt750lemd 34639 hgt750lem 34642 hgt750leme 34649 poimirlem26 37640 poimirlem28 37642 fmtno4prmfac 47573 31prm 47598 nfermltl2rev 47744 linevalexample 48384 ackval42 48685 |
| Copyright terms: Public domain | W3C validator |