| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0zi | Structured version Visualization version GIF version | ||
| Description: A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| nn0zi.1 | ⊢ 𝑁 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0zi | ⊢ 𝑁 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssz 12491 | . 2 ⊢ ℕ0 ⊆ ℤ | |
| 2 | nn0zi.1 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3926 | 1 ⊢ 𝑁 ∈ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ℕ0cn0 12381 ℤcz 12468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-i2m1 11074 ax-1ne0 11075 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 |
| This theorem is referenced by: le9lt10 12615 fz0to5un2tp 13531 expnass 14115 faclbnd4lem1 14200 efsep 16019 3dvdsdec 16243 3dvds2dec 16244 divalglem0 16304 divalglem2 16306 ndvdsi 16323 gcdaddmlem 16435 6lcm4e12 16527 phicl2 16679 dec2dvds 16975 dec5dvds2 16977 modxai 16980 mod2xnegi 16983 gcdi 16985 gcdmodi 16986 1259lem1 17042 1259lem2 17043 1259lem3 17044 1259lem4 17045 1259lem5 17046 2503lem1 17048 2503lem2 17049 2503lem3 17050 4001lem1 17052 4001lem2 17053 4001lem3 17054 4001lem4 17055 ppi1i 27105 ppi2i 27106 ppiublem1 27140 konigsberglem5 30236 dp2lt10 32864 dp2ltc 32867 ballotlemfelz 34504 hgt750lemd 34661 hgt750lem 34664 hgt750leme 34671 poimirlem26 37696 poimirlem28 37698 fmtno4prmfac 47682 31prm 47707 nfermltl2rev 47853 linevalexample 48506 ackval42 48807 |
| Copyright terms: Public domain | W3C validator |