Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0zi | Structured version Visualization version GIF version |
Description: A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
nn0zi.1 | ⊢ 𝑁 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0zi | ⊢ 𝑁 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssz 12271 | . 2 ⊢ ℕ0 ⊆ ℤ | |
2 | nn0zi.1 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
3 | 1, 2 | sselii 3914 | 1 ⊢ 𝑁 ∈ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ℕ0cn0 12163 ℤcz 12249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-i2m1 10870 ax-1ne0 10871 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 |
This theorem is referenced by: le9lt10 12393 expnass 13852 faclbnd4lem1 13935 efsep 15747 3dvdsdec 15969 3dvds2dec 15970 divalglem0 16030 divalglem2 16032 ndvdsi 16049 gcdaddmlem 16159 6lcm4e12 16249 phicl2 16397 dec2dvds 16692 dec5dvds2 16694 modxai 16697 mod2xnegi 16700 gcdi 16702 gcdmodi 16703 1259lem1 16760 1259lem2 16761 1259lem3 16762 1259lem4 16763 1259lem5 16764 2503lem1 16766 2503lem2 16767 2503lem3 16768 4001lem1 16770 4001lem2 16771 4001lem3 16772 4001lem4 16773 ppi1i 26222 ppi2i 26223 ppiublem1 26255 konigsberglem5 28521 dp2lt10 31060 dp2ltc 31063 ballotlemfelz 32357 hgt750lemd 32528 hgt750lem 32531 hgt750leme 32538 poimirlem26 35730 poimirlem28 35732 fmtno4prmfac 44912 31prm 44937 nfermltl2rev 45083 linevalexample 45624 ackval42 45930 |
Copyright terms: Public domain | W3C validator |