![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0zi | Structured version Visualization version GIF version |
Description: A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
nn0zi.1 | ⊢ 𝑁 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0zi | ⊢ 𝑁 ∈ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssz 12662 | . 2 ⊢ ℕ0 ⊆ ℤ | |
2 | nn0zi.1 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
3 | 1, 2 | sselii 4005 | 1 ⊢ 𝑁 ∈ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ℕ0cn0 12553 ℤcz 12639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-i2m1 11252 ax-1ne0 11253 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 |
This theorem is referenced by: le9lt10 12785 fz0to5un2tp 13688 expnass 14257 faclbnd4lem1 14342 efsep 16158 3dvdsdec 16380 3dvds2dec 16381 divalglem0 16441 divalglem2 16443 ndvdsi 16460 gcdaddmlem 16570 6lcm4e12 16663 phicl2 16815 dec2dvds 17110 dec5dvds2 17112 modxai 17115 mod2xnegi 17118 gcdi 17120 gcdmodi 17121 1259lem1 17178 1259lem2 17179 1259lem3 17180 1259lem4 17181 1259lem5 17182 2503lem1 17184 2503lem2 17185 2503lem3 17186 4001lem1 17188 4001lem2 17189 4001lem3 17190 4001lem4 17191 ppi1i 27229 ppi2i 27230 ppiublem1 27264 konigsberglem5 30288 dp2lt10 32848 dp2ltc 32851 ballotlemfelz 34455 hgt750lemd 34625 hgt750lem 34628 hgt750leme 34635 poimirlem26 37606 poimirlem28 37608 fmtno4prmfac 47446 31prm 47471 nfermltl2rev 47617 linevalexample 48124 ackval42 48430 |
Copyright terms: Public domain | W3C validator |