Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sinmulcos Structured version   Visualization version   GIF version

Theorem sinmulcos 44196
Description: Multiplication formula for sine and cosine. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
sinmulcos ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((sinβ€˜π΄) Β· (cosβ€˜π΅)) = (((sinβ€˜(𝐴 + 𝐡)) + (sinβ€˜(𝐴 βˆ’ 𝐡))) / 2))

Proof of Theorem sinmulcos
StepHypRef Expression
1 simpl 484 . . . . . . 7 ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ 𝐴 ∈ β„‚)
21sincld 16020 . . . . . 6 ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (sinβ€˜π΄) ∈ β„‚)
3 cosf 16015 . . . . . . . 8 cos:β„‚βŸΆβ„‚
43a1i 11 . . . . . . 7 (𝐴 ∈ β„‚ β†’ cos:β„‚βŸΆβ„‚)
54ffvelcdmda 7039 . . . . . 6 ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (cosβ€˜π΅) ∈ β„‚)
62, 5mulcld 11183 . . . . 5 ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((sinβ€˜π΄) Β· (cosβ€˜π΅)) ∈ β„‚)
71coscld 16021 . . . . . 6 ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (cosβ€˜π΄) ∈ β„‚)
8 sinf 16014 . . . . . . . 8 sin:β„‚βŸΆβ„‚
98a1i 11 . . . . . . 7 (𝐴 ∈ β„‚ β†’ sin:β„‚βŸΆβ„‚)
109ffvelcdmda 7039 . . . . . 6 ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (sinβ€˜π΅) ∈ β„‚)
117, 10mulcld 11183 . . . . 5 ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((cosβ€˜π΄) Β· (sinβ€˜π΅)) ∈ β„‚)
126, 11, 6ppncand 11560 . . . 4 ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((((sinβ€˜π΄) Β· (cosβ€˜π΅)) + ((cosβ€˜π΄) Β· (sinβ€˜π΅))) + (((sinβ€˜π΄) Β· (cosβ€˜π΅)) βˆ’ ((cosβ€˜π΄) Β· (sinβ€˜π΅)))) = (((sinβ€˜π΄) Β· (cosβ€˜π΅)) + ((sinβ€˜π΄) Β· (cosβ€˜π΅))))
13 sinadd 16054 . . . . 5 ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (sinβ€˜(𝐴 + 𝐡)) = (((sinβ€˜π΄) Β· (cosβ€˜π΅)) + ((cosβ€˜π΄) Β· (sinβ€˜π΅))))
14 sinsub 16058 . . . . 5 ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (sinβ€˜(𝐴 βˆ’ 𝐡)) = (((sinβ€˜π΄) Β· (cosβ€˜π΅)) βˆ’ ((cosβ€˜π΄) Β· (sinβ€˜π΅))))
1513, 14oveq12d 7379 . . . 4 ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((sinβ€˜(𝐴 + 𝐡)) + (sinβ€˜(𝐴 βˆ’ 𝐡))) = ((((sinβ€˜π΄) Β· (cosβ€˜π΅)) + ((cosβ€˜π΄) Β· (sinβ€˜π΅))) + (((sinβ€˜π΄) Β· (cosβ€˜π΅)) βˆ’ ((cosβ€˜π΄) Β· (sinβ€˜π΅)))))
1662timesd 12404 . . . 4 ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (2 Β· ((sinβ€˜π΄) Β· (cosβ€˜π΅))) = (((sinβ€˜π΄) Β· (cosβ€˜π΅)) + ((sinβ€˜π΄) Β· (cosβ€˜π΅))))
1712, 15, 163eqtr4d 2783 . . 3 ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((sinβ€˜(𝐴 + 𝐡)) + (sinβ€˜(𝐴 βˆ’ 𝐡))) = (2 Β· ((sinβ€˜π΄) Β· (cosβ€˜π΅))))
1817oveq1d 7376 . 2 ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ (((sinβ€˜(𝐴 + 𝐡)) + (sinβ€˜(𝐴 βˆ’ 𝐡))) / 2) = ((2 Β· ((sinβ€˜π΄) Β· (cosβ€˜π΅))) / 2))
19 2cnd 12239 . . 3 ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ 2 ∈ β„‚)
20 2ne0 12265 . . . 4 2 β‰  0
2120a1i 11 . . 3 ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ 2 β‰  0)
226, 19, 21divcan3d 11944 . 2 ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((2 Β· ((sinβ€˜π΄) Β· (cosβ€˜π΅))) / 2) = ((sinβ€˜π΄) Β· (cosβ€˜π΅)))
2318, 22eqtr2d 2774 1 ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‚) β†’ ((sinβ€˜π΄) Β· (cosβ€˜π΅)) = (((sinβ€˜(𝐴 + 𝐡)) + (sinβ€˜(𝐴 βˆ’ 𝐡))) / 2))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   β‰  wne 2940  βŸΆwf 6496  β€˜cfv 6500  (class class class)co 7361  β„‚cc 11057  0cc0 11059   + caddc 11062   Β· cmul 11064   βˆ’ cmin 11393   / cdiv 11820  2c2 12216  sincsin 15954  cosccos 15955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-inf2 9585  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-se 5593  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-pm 8774  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-sup 9386  df-inf 9387  df-oi 9454  df-card 9883  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-2 12224  df-3 12225  df-n0 12422  df-z 12508  df-uz 12772  df-rp 12924  df-ico 13279  df-fz 13434  df-fzo 13577  df-fl 13706  df-seq 13916  df-exp 13977  df-fac 14183  df-bc 14212  df-hash 14240  df-shft 14961  df-cj 14993  df-re 14994  df-im 14995  df-sqrt 15129  df-abs 15130  df-limsup 15362  df-clim 15379  df-rlim 15380  df-sum 15580  df-ef 15958  df-sin 15960  df-cos 15961
This theorem is referenced by:  dirkertrigeqlem2  44430
  Copyright terms: Public domain W3C validator