![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sinmulcos | Structured version Visualization version GIF version |
Description: Multiplication formula for sine and cosine. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
sinmulcos | β’ ((π΄ β β β§ π΅ β β) β ((sinβπ΄) Β· (cosβπ΅)) = (((sinβ(π΄ + π΅)) + (sinβ(π΄ β π΅))) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . . . . 7 β’ ((π΄ β β β§ π΅ β β) β π΄ β β) | |
2 | 1 | sincld 16080 | . . . . . 6 β’ ((π΄ β β β§ π΅ β β) β (sinβπ΄) β β) |
3 | cosf 16075 | . . . . . . . 8 β’ cos:ββΆβ | |
4 | 3 | a1i 11 | . . . . . . 7 β’ (π΄ β β β cos:ββΆβ) |
5 | 4 | ffvelcdmda 7080 | . . . . . 6 β’ ((π΄ β β β§ π΅ β β) β (cosβπ΅) β β) |
6 | 2, 5 | mulcld 11238 | . . . . 5 β’ ((π΄ β β β§ π΅ β β) β ((sinβπ΄) Β· (cosβπ΅)) β β) |
7 | 1 | coscld 16081 | . . . . . 6 β’ ((π΄ β β β§ π΅ β β) β (cosβπ΄) β β) |
8 | sinf 16074 | . . . . . . . 8 β’ sin:ββΆβ | |
9 | 8 | a1i 11 | . . . . . . 7 β’ (π΄ β β β sin:ββΆβ) |
10 | 9 | ffvelcdmda 7080 | . . . . . 6 β’ ((π΄ β β β§ π΅ β β) β (sinβπ΅) β β) |
11 | 7, 10 | mulcld 11238 | . . . . 5 β’ ((π΄ β β β§ π΅ β β) β ((cosβπ΄) Β· (sinβπ΅)) β β) |
12 | 6, 11, 6 | ppncand 11615 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β ((((sinβπ΄) Β· (cosβπ΅)) + ((cosβπ΄) Β· (sinβπ΅))) + (((sinβπ΄) Β· (cosβπ΅)) β ((cosβπ΄) Β· (sinβπ΅)))) = (((sinβπ΄) Β· (cosβπ΅)) + ((sinβπ΄) Β· (cosβπ΅)))) |
13 | sinadd 16114 | . . . . 5 β’ ((π΄ β β β§ π΅ β β) β (sinβ(π΄ + π΅)) = (((sinβπ΄) Β· (cosβπ΅)) + ((cosβπ΄) Β· (sinβπ΅)))) | |
14 | sinsub 16118 | . . . . 5 β’ ((π΄ β β β§ π΅ β β) β (sinβ(π΄ β π΅)) = (((sinβπ΄) Β· (cosβπ΅)) β ((cosβπ΄) Β· (sinβπ΅)))) | |
15 | 13, 14 | oveq12d 7423 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β ((sinβ(π΄ + π΅)) + (sinβ(π΄ β π΅))) = ((((sinβπ΄) Β· (cosβπ΅)) + ((cosβπ΄) Β· (sinβπ΅))) + (((sinβπ΄) Β· (cosβπ΅)) β ((cosβπ΄) Β· (sinβπ΅))))) |
16 | 6 | 2timesd 12459 | . . . 4 β’ ((π΄ β β β§ π΅ β β) β (2 Β· ((sinβπ΄) Β· (cosβπ΅))) = (((sinβπ΄) Β· (cosβπ΅)) + ((sinβπ΄) Β· (cosβπ΅)))) |
17 | 12, 15, 16 | 3eqtr4d 2776 | . . 3 β’ ((π΄ β β β§ π΅ β β) β ((sinβ(π΄ + π΅)) + (sinβ(π΄ β π΅))) = (2 Β· ((sinβπ΄) Β· (cosβπ΅)))) |
18 | 17 | oveq1d 7420 | . 2 β’ ((π΄ β β β§ π΅ β β) β (((sinβ(π΄ + π΅)) + (sinβ(π΄ β π΅))) / 2) = ((2 Β· ((sinβπ΄) Β· (cosβπ΅))) / 2)) |
19 | 2cnd 12294 | . . 3 β’ ((π΄ β β β§ π΅ β β) β 2 β β) | |
20 | 2ne0 12320 | . . . 4 β’ 2 β 0 | |
21 | 20 | a1i 11 | . . 3 β’ ((π΄ β β β§ π΅ β β) β 2 β 0) |
22 | 6, 19, 21 | divcan3d 11999 | . 2 β’ ((π΄ β β β§ π΅ β β) β ((2 Β· ((sinβπ΄) Β· (cosβπ΅))) / 2) = ((sinβπ΄) Β· (cosβπ΅))) |
23 | 18, 22 | eqtr2d 2767 | 1 β’ ((π΄ β β β§ π΅ β β) β ((sinβπ΄) Β· (cosβπ΅)) = (((sinβ(π΄ + π΅)) + (sinβ(π΄ β π΅))) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2934 βΆwf 6533 βcfv 6537 (class class class)co 7405 βcc 11110 0cc0 11112 + caddc 11115 Β· cmul 11117 β cmin 11448 / cdiv 11875 2c2 12271 sincsin 16013 cosccos 16014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12981 df-ico 13336 df-fz 13491 df-fzo 13634 df-fl 13763 df-seq 13973 df-exp 14033 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15020 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-limsup 15421 df-clim 15438 df-rlim 15439 df-sum 15639 df-ef 16017 df-sin 16019 df-cos 16020 |
This theorem is referenced by: dirkertrigeqlem2 45387 |
Copyright terms: Public domain | W3C validator |