Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sinmulcos Structured version   Visualization version   GIF version

Theorem sinmulcos 42166
Description: Multiplication formula for sine and cosine. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
sinmulcos ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (cos‘𝐵)) = (((sin‘(𝐴 + 𝐵)) + (sin‘(𝐴𝐵))) / 2))

Proof of Theorem sinmulcos
StepHypRef Expression
1 simpl 485 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
21sincld 15483 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘𝐴) ∈ ℂ)
3 cosf 15478 . . . . . . . 8 cos:ℂ⟶ℂ
43a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → cos:ℂ⟶ℂ)
54ffvelrnda 6851 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘𝐵) ∈ ℂ)
62, 5mulcld 10661 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (cos‘𝐵)) ∈ ℂ)
71coscld 15484 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘𝐴) ∈ ℂ)
8 sinf 15477 . . . . . . . 8 sin:ℂ⟶ℂ
98a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → sin:ℂ⟶ℂ)
109ffvelrnda 6851 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘𝐵) ∈ ℂ)
117, 10mulcld 10661 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (sin‘𝐵)) ∈ ℂ)
126, 11, 6ppncand 11037 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))) + (((sin‘𝐴) · (cos‘𝐵)) − ((cos‘𝐴) · (sin‘𝐵)))) = (((sin‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵))))
13 sinadd 15517 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))))
14 sinsub 15521 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) − ((cos‘𝐴) · (sin‘𝐵))))
1513, 14oveq12d 7174 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘(𝐴 + 𝐵)) + (sin‘(𝐴𝐵))) = ((((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))) + (((sin‘𝐴) · (cos‘𝐵)) − ((cos‘𝐴) · (sin‘𝐵)))))
1662timesd 11881 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((sin‘𝐴) · (cos‘𝐵))) = (((sin‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (cos‘𝐵))))
1712, 15, 163eqtr4d 2866 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘(𝐴 + 𝐵)) + (sin‘(𝐴𝐵))) = (2 · ((sin‘𝐴) · (cos‘𝐵))))
1817oveq1d 7171 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((sin‘(𝐴 + 𝐵)) + (sin‘(𝐴𝐵))) / 2) = ((2 · ((sin‘𝐴) · (cos‘𝐵))) / 2))
19 2cnd 11716 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ∈ ℂ)
20 2ne0 11742 . . . 4 2 ≠ 0
2120a1i 11 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ≠ 0)
226, 19, 21divcan3d 11421 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · ((sin‘𝐴) · (cos‘𝐵))) / 2) = ((sin‘𝐴) · (cos‘𝐵)))
2318, 22eqtr2d 2857 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (cos‘𝐵)) = (((sin‘(𝐴 + 𝐵)) + (sin‘(𝐴𝐵))) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  0cc0 10537   + caddc 10540   · cmul 10542  cmin 10870   / cdiv 11297  2c2 11693  sincsin 15417  cosccos 15418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ico 12745  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424
This theorem is referenced by:  dirkertrigeqlem2  42404
  Copyright terms: Public domain W3C validator