Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  psrmnd Structured version   Visualization version   GIF version

Theorem psrmnd 42500
Description: The ring of power series is a monoid. (Contributed by SN, 25-Apr-2025.)
Hypotheses
Ref Expression
psrmnd.s 𝑆 = (𝐼 mPwSer 𝑅)
psrmnd.i (𝜑𝐼𝑉)
psrmnd.r (𝜑𝑅 ∈ Mnd)
Assertion
Ref Expression
psrmnd (𝜑𝑆 ∈ Mnd)

Proof of Theorem psrmnd
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrmnd.r . . 3 (𝜑𝑅 ∈ Mnd)
2 ovex 7481 . . . 4 (ℕ0m 𝐼) ∈ V
32rabex 5357 . . 3 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
4 eqid 2740 . . . 4 (𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = (𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
54pwsmnd 18807 . . 3 ((𝑅 ∈ Mnd ∧ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V) → (𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∈ Mnd)
61, 3, 5sylancl 585 . 2 (𝜑 → (𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∈ Mnd)
7 eqid 2740 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
84, 7pwsbas 17547 . . . 4 ((𝑅 ∈ Mnd ∧ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V) → ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = (Base‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
91, 3, 8sylancl 585 . . 3 (𝜑 → ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = (Base‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
10 psrmnd.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
11 eqid 2740 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
12 eqid 2740 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
13 psrmnd.i . . . . 5 (𝜑𝐼𝑉)
1410, 7, 11, 12, 13psrbas 21976 . . . 4 (𝜑 → (Base‘𝑆) = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
1514eqcomd 2746 . . 3 (𝜑 → ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) = (Base‘𝑆))
16 eqid 2740 . . . . 5 (Base‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) = (Base‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
171adantr 480 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → 𝑅 ∈ Mnd)
183a1i 11 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
199eleq2d 2830 . . . . . . 7 (𝜑 → (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ↔ 𝑥 ∈ (Base‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))))
2019biimpa 476 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) → 𝑥 ∈ (Base‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
2120adantrr 716 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → 𝑥 ∈ (Base‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
229eleq2d 2830 . . . . . . 7 (𝜑 → (𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ↔ 𝑦 ∈ (Base‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))))
2322biimpa 476 . . . . . 6 ((𝜑𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) → 𝑦 ∈ (Base‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
2423adantrl 715 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → 𝑦 ∈ (Base‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
25 eqid 2740 . . . . 5 (+g𝑅) = (+g𝑅)
26 eqid 2740 . . . . 5 (+g‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) = (+g‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
274, 16, 17, 18, 21, 24, 25, 26pwsplusgval 17550 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → (𝑥(+g‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))𝑦) = (𝑥f (+g𝑅)𝑦))
28 eqid 2740 . . . . 5 (+g𝑆) = (+g𝑆)
2914eleq2d 2830 . . . . . . 7 (𝜑 → (𝑥 ∈ (Base‘𝑆) ↔ 𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
3029biimpar 477 . . . . . 6 ((𝜑𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) → 𝑥 ∈ (Base‘𝑆))
3130adantrr 716 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → 𝑥 ∈ (Base‘𝑆))
3214eleq2d 2830 . . . . . . 7 (𝜑 → (𝑦 ∈ (Base‘𝑆) ↔ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})))
3332biimpar 477 . . . . . 6 ((𝜑𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})) → 𝑦 ∈ (Base‘𝑆))
3433adantrl 715 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → 𝑦 ∈ (Base‘𝑆))
3510, 12, 25, 28, 31, 34psradd 21980 . . . 4 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → (𝑥(+g𝑆)𝑦) = (𝑥f (+g𝑅)𝑦))
3627, 35eqtr4d 2783 . . 3 ((𝜑 ∧ (𝑥 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑦 ∈ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))) → (𝑥(+g‘(𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))𝑦) = (𝑥(+g𝑆)𝑦))
379, 15, 36mndpropd 18797 . 2 (𝜑 → ((𝑅s {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∈ Mnd ↔ 𝑆 ∈ Mnd))
386, 37mpbid 232 1 (𝜑𝑆 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  ccnv 5699  cima 5703  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884  Fincfn 9003  cn 12293  0cn0 12553  Basecbs 17258  +gcplusg 17311  s cpws 17506  Mndcmnd 18772   mPwSer cmps 21947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-psr 21952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator