![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > repswsymball | Structured version Visualization version GIF version |
Description: All the symbols of a "repeated symbol word" are the same. (Contributed by AV, 10-Nov-2018.) |
Ref | Expression |
---|---|
repswsymball | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉) → (𝑊 = (𝑆 repeatS (♯‘𝑊)) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1089 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = 𝑆) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = 𝑆)) | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = 𝑆) ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = 𝑆))) |
3 | lencl 14479 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
4 | 3 | anim1ci 616 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉) → (𝑆 ∈ 𝑉 ∧ (♯‘𝑊) ∈ ℕ0)) |
5 | repsdf2 14724 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ (♯‘𝑊) ∈ ℕ0) → (𝑊 = (𝑆 repeatS (♯‘𝑊)) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = 𝑆))) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉) → (𝑊 = (𝑆 repeatS (♯‘𝑊)) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = 𝑆))) |
7 | simpl 483 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉) → 𝑊 ∈ Word 𝑉) | |
8 | eqidd 2733 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉) → (♯‘𝑊) = (♯‘𝑊)) | |
9 | 7, 8 | jca 512 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊))) |
10 | 9 | biantrurd 533 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉) → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = 𝑆 ↔ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = 𝑆))) |
11 | 2, 6, 10 | 3bitr4d 310 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉) → (𝑊 = (𝑆 repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = 𝑆)) |
12 | 11 | biimpd 228 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉) → (𝑊 = (𝑆 repeatS (♯‘𝑊)) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ‘cfv 6540 (class class class)co 7405 0cc0 11106 ℕ0cn0 12468 ..^cfzo 13623 ♯chash 14286 Word cword 14460 repeatS creps 14714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 df-reps 14715 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |