| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqcli | Structured version Visualization version GIF version | ||
| Description: Closure of square. (Contributed by NM, 2-Aug-1999.) |
| Ref | Expression |
|---|---|
| sqval.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| sqcli | ⊢ (𝐴↑2) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqval.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | sqcl 14139 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴↑2) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 (class class class)co 7412 ℂcc 11134 2c2 12302 ↑cexp 14083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-n0 12509 df-z 12596 df-uz 12860 df-seq 14024 df-exp 14084 |
| This theorem is referenced by: sqeqori 14234 subsq0i 14235 crreczi 14248 sinhalfpilem 26440 sincos6thpi 26493 1cubr 26820 dcubic2 26822 mcubic 26825 addsq2nreurex 27423 ax5seglem7 28879 axlowdimlem16 28901 ip0i 30771 ipasslem10 30785 siilem1 30797 normlem3 31058 norm-ii-i 31083 pjneli 31669 dpmul4 32827 quad3 35609 areaquad 43166 |
| Copyright terms: Public domain | W3C validator |