| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ttgitvval | Structured version Visualization version GIF version | ||
| Description: Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) |
| Ref | Expression |
|---|---|
| ttgval.n | ⊢ 𝐺 = (toTG‘𝐻) |
| ttgitvval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ttgitvval.b | ⊢ 𝑃 = (Base‘𝐻) |
| ttgitvval.m | ⊢ − = (-g‘𝐻) |
| ttgitvval.s | ⊢ · = ( ·𝑠 ‘𝐻) |
| Ref | Expression |
|---|---|
| ttgitvval | ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋𝐼𝑌) = {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ttgval.n | . . . . 5 ⊢ 𝐺 = (toTG‘𝐻) | |
| 2 | ttgitvval.b | . . . . 5 ⊢ 𝑃 = (Base‘𝐻) | |
| 3 | ttgitvval.m | . . . . 5 ⊢ − = (-g‘𝐻) | |
| 4 | ttgitvval.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝐻) | |
| 5 | ttgitvval.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 6 | 1, 2, 3, 4, 5 | ttgval 28851 | . . . 4 ⊢ (𝐻 ∈ 𝑉 → (𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx), (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})〉) ∧ 𝐼 = (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}))) |
| 7 | 6 | simprd 495 | . . 3 ⊢ (𝐻 ∈ 𝑉 → 𝐼 = (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
| 8 | 7 | 3ad2ant1 1133 | . 2 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝐼 = (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
| 9 | simprl 770 | . . . . . 6 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑥 = 𝑋) | |
| 10 | 9 | oveq2d 7362 | . . . . 5 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑧 − 𝑥) = (𝑧 − 𝑋)) |
| 11 | simprr 772 | . . . . . . 7 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
| 12 | 11, 9 | oveq12d 7364 | . . . . . 6 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑦 − 𝑥) = (𝑌 − 𝑋)) |
| 13 | 12 | oveq2d 7362 | . . . . 5 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑘 · (𝑦 − 𝑥)) = (𝑘 · (𝑌 − 𝑋))) |
| 14 | 10, 13 | eqeq12d 2747 | . . . 4 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)) ↔ (𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) |
| 15 | 14 | rexbidv 3156 | . . 3 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) |
| 16 | 15 | rabbidv 3402 | . 2 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))} = {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))}) |
| 17 | simp2 1137 | . 2 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝑋 ∈ 𝑃) | |
| 18 | simp3 1138 | . 2 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝑌 ∈ 𝑃) | |
| 19 | 2 | fvexi 6836 | . . . 4 ⊢ 𝑃 ∈ V |
| 20 | 19 | rabex 5277 | . . 3 ⊢ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))} ∈ V |
| 21 | 20 | a1i 11 | . 2 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))} ∈ V) |
| 22 | 8, 16, 17, 18, 21 | ovmpod 7498 | 1 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋𝐼𝑌) = {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 {crab 3395 Vcvv 3436 〈cop 4582 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 0cc0 11003 1c1 11004 [,]cicc 13245 sSet csts 17071 ndxcnx 17101 Basecbs 17117 ·𝑠 cvsca 17162 -gcsg 18845 Itvcitv 28409 LineGclng 28410 toTGcttg 28849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-dec 12586 df-sets 17072 df-slot 17090 df-ndx 17102 df-itv 28411 df-lng 28412 df-ttg 28850 |
| This theorem is referenced by: ttgelitv 28859 |
| Copyright terms: Public domain | W3C validator |