Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ttgitvval | Structured version Visualization version GIF version |
Description: Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) |
Ref | Expression |
---|---|
ttgval.n | ⊢ 𝐺 = (toTG‘𝐻) |
ttgitvval.i | ⊢ 𝐼 = (Itv‘𝐺) |
ttgitvval.b | ⊢ 𝑃 = (Base‘𝐻) |
ttgitvval.m | ⊢ − = (-g‘𝐻) |
ttgitvval.s | ⊢ · = ( ·𝑠 ‘𝐻) |
Ref | Expression |
---|---|
ttgitvval | ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋𝐼𝑌) = {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ttgval.n | . . . . 5 ⊢ 𝐺 = (toTG‘𝐻) | |
2 | ttgitvval.b | . . . . 5 ⊢ 𝑃 = (Base‘𝐻) | |
3 | ttgitvval.m | . . . . 5 ⊢ − = (-g‘𝐻) | |
4 | ttgitvval.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝐻) | |
5 | ttgitvval.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | 1, 2, 3, 4, 5 | ttgval 27236 | . . . 4 ⊢ (𝐻 ∈ 𝑉 → (𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx), (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})〉) ∧ 𝐼 = (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}))) |
7 | 6 | simprd 496 | . . 3 ⊢ (𝐻 ∈ 𝑉 → 𝐼 = (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
8 | 7 | 3ad2ant1 1132 | . 2 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝐼 = (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
9 | simprl 768 | . . . . . 6 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑥 = 𝑋) | |
10 | 9 | oveq2d 7291 | . . . . 5 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑧 − 𝑥) = (𝑧 − 𝑋)) |
11 | simprr 770 | . . . . . . 7 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
12 | 11, 9 | oveq12d 7293 | . . . . . 6 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑦 − 𝑥) = (𝑌 − 𝑋)) |
13 | 12 | oveq2d 7291 | . . . . 5 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑘 · (𝑦 − 𝑥)) = (𝑘 · (𝑌 − 𝑋))) |
14 | 10, 13 | eqeq12d 2754 | . . . 4 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)) ↔ (𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) |
15 | 14 | rexbidv 3226 | . . 3 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) |
16 | 15 | rabbidv 3414 | . 2 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))} = {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))}) |
17 | simp2 1136 | . 2 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝑋 ∈ 𝑃) | |
18 | simp3 1137 | . 2 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝑌 ∈ 𝑃) | |
19 | 2 | fvexi 6788 | . . . 4 ⊢ 𝑃 ∈ V |
20 | 19 | rabex 5256 | . . 3 ⊢ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))} ∈ V |
21 | 20 | a1i 11 | . 2 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))} ∈ V) |
22 | 8, 16, 17, 18, 21 | ovmpod 7425 | 1 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋𝐼𝑌) = {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ w3o 1085 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 {crab 3068 Vcvv 3432 〈cop 4567 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 0cc0 10871 1c1 10872 [,]cicc 13082 sSet csts 16864 ndxcnx 16894 Basecbs 16912 ·𝑠 cvsca 16966 -gcsg 18579 Itvcitv 26794 LineGclng 26795 toTGcttg 27234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-dec 12438 df-sets 16865 df-slot 16883 df-ndx 16895 df-itv 26796 df-lng 26797 df-ttg 27235 |
This theorem is referenced by: ttgelitv 27250 |
Copyright terms: Public domain | W3C validator |