MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttgitvval Structured version   Visualization version   GIF version

Theorem ttgitvval 27537
Description: Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttgitvval.i 𝐼 = (Itv‘𝐺)
ttgitvval.b 𝑃 = (Base‘𝐻)
ttgitvval.m = (-g𝐻)
ttgitvval.s · = ( ·𝑠𝐻)
Assertion
Ref Expression
ttgitvval ((𝐻𝑉𝑋𝑃𝑌𝑃) → (𝑋𝐼𝑌) = {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))})
Distinct variable groups:   𝑧,𝑘,   𝑧, ·   𝑘,𝐻,𝑧   𝑃,𝑘,𝑧   𝑘,𝑉,𝑧   𝑘,𝑋,𝑧   𝑘,𝑌,𝑧
Allowed substitution hints:   · (𝑘)   𝐺(𝑧,𝑘)   𝐼(𝑧,𝑘)

Proof of Theorem ttgitvval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ttgval.n . . . . 5 𝐺 = (toTG‘𝐻)
2 ttgitvval.b . . . . 5 𝑃 = (Base‘𝐻)
3 ttgitvval.m . . . . 5 = (-g𝐻)
4 ttgitvval.s . . . . 5 · = ( ·𝑠𝐻)
5 ttgitvval.i . . . . 5 𝐼 = (Itv‘𝐺)
61, 2, 3, 4, 5ttgval 27524 . . . 4 (𝐻𝑉 → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) ∧ 𝐼 = (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})))
76simprd 497 . . 3 (𝐻𝑉𝐼 = (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
873ad2ant1 1133 . 2 ((𝐻𝑉𝑋𝑃𝑌𝑃) → 𝐼 = (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
9 simprl 769 . . . . . 6 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
109oveq2d 7357 . . . . 5 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑧 𝑥) = (𝑧 𝑋))
11 simprr 771 . . . . . . 7 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
1211, 9oveq12d 7359 . . . . . 6 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑦 𝑥) = (𝑌 𝑋))
1312oveq2d 7357 . . . . 5 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑘 · (𝑦 𝑥)) = (𝑘 · (𝑌 𝑋)))
1410, 13eqeq12d 2753 . . . 4 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝑧 𝑥) = (𝑘 · (𝑦 𝑥)) ↔ (𝑧 𝑋) = (𝑘 · (𝑌 𝑋))))
1514rexbidv 3172 . . 3 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))))
1615rabbidv 3412 . 2 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))} = {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))})
17 simp2 1137 . 2 ((𝐻𝑉𝑋𝑃𝑌𝑃) → 𝑋𝑃)
18 simp3 1138 . 2 ((𝐻𝑉𝑋𝑃𝑌𝑃) → 𝑌𝑃)
192fvexi 6843 . . . 4 𝑃 ∈ V
2019rabex 5280 . . 3 {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))} ∈ V
2120a1i 11 . 2 ((𝐻𝑉𝑋𝑃𝑌𝑃) → {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))} ∈ V)
228, 16, 17, 18, 21ovmpod 7491 1 ((𝐻𝑉𝑋𝑃𝑌𝑃) → (𝑋𝐼𝑌) = {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3o 1086  w3a 1087   = wceq 1541  wcel 2106  wrex 3071  {crab 3404  Vcvv 3442  cop 4583  cfv 6483  (class class class)co 7341  cmpo 7343  0cc0 10976  1c1 10977  [,]cicc 13187   sSet csts 16961  ndxcnx 16991  Basecbs 17009   ·𝑠 cvsca 17063  -gcsg 18675  Itvcitv 27082  LineGclng 27083  toTGcttg 27522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-1st 7903  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-er 8573  df-en 8809  df-dom 8810  df-sdom 8811  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-nn 12079  df-2 12141  df-3 12142  df-4 12143  df-5 12144  df-6 12145  df-7 12146  df-8 12147  df-9 12148  df-n0 12339  df-dec 12543  df-sets 16962  df-slot 16980  df-ndx 16992  df-itv 27084  df-lng 27085  df-ttg 27523
This theorem is referenced by:  ttgelitv  27538
  Copyright terms: Public domain W3C validator