Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ttgitvval | Structured version Visualization version GIF version |
Description: Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) |
Ref | Expression |
---|---|
ttgval.n | ⊢ 𝐺 = (toTG‘𝐻) |
ttgitvval.i | ⊢ 𝐼 = (Itv‘𝐺) |
ttgitvval.b | ⊢ 𝑃 = (Base‘𝐻) |
ttgitvval.m | ⊢ − = (-g‘𝐻) |
ttgitvval.s | ⊢ · = ( ·𝑠 ‘𝐻) |
Ref | Expression |
---|---|
ttgitvval | ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋𝐼𝑌) = {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ttgval.n | . . . . 5 ⊢ 𝐺 = (toTG‘𝐻) | |
2 | ttgitvval.b | . . . . 5 ⊢ 𝑃 = (Base‘𝐻) | |
3 | ttgitvval.m | . . . . 5 ⊢ − = (-g‘𝐻) | |
4 | ttgitvval.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝐻) | |
5 | ttgitvval.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | 1, 2, 3, 4, 5 | ttgval 27524 | . . . 4 ⊢ (𝐻 ∈ 𝑉 → (𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx), (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})〉) ∧ 𝐼 = (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}))) |
7 | 6 | simprd 497 | . . 3 ⊢ (𝐻 ∈ 𝑉 → 𝐼 = (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
8 | 7 | 3ad2ant1 1133 | . 2 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝐼 = (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
9 | simprl 769 | . . . . . 6 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑥 = 𝑋) | |
10 | 9 | oveq2d 7357 | . . . . 5 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑧 − 𝑥) = (𝑧 − 𝑋)) |
11 | simprr 771 | . . . . . . 7 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
12 | 11, 9 | oveq12d 7359 | . . . . . 6 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑦 − 𝑥) = (𝑌 − 𝑋)) |
13 | 12 | oveq2d 7357 | . . . . 5 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑘 · (𝑦 − 𝑥)) = (𝑘 · (𝑌 − 𝑋))) |
14 | 10, 13 | eqeq12d 2753 | . . . 4 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)) ↔ (𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) |
15 | 14 | rexbidv 3172 | . . 3 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) |
16 | 15 | rabbidv 3412 | . 2 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))} = {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))}) |
17 | simp2 1137 | . 2 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝑋 ∈ 𝑃) | |
18 | simp3 1138 | . 2 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝑌 ∈ 𝑃) | |
19 | 2 | fvexi 6843 | . . . 4 ⊢ 𝑃 ∈ V |
20 | 19 | rabex 5280 | . . 3 ⊢ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))} ∈ V |
21 | 20 | a1i 11 | . 2 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))} ∈ V) |
22 | 8, 16, 17, 18, 21 | ovmpod 7491 | 1 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋𝐼𝑌) = {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ w3o 1086 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∃wrex 3071 {crab 3404 Vcvv 3442 〈cop 4583 ‘cfv 6483 (class class class)co 7341 ∈ cmpo 7343 0cc0 10976 1c1 10977 [,]cicc 13187 sSet csts 16961 ndxcnx 16991 Basecbs 17009 ·𝑠 cvsca 17063 -gcsg 18675 Itvcitv 27082 LineGclng 27083 toTGcttg 27522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-n0 12339 df-dec 12543 df-sets 16962 df-slot 16980 df-ndx 16992 df-itv 27084 df-lng 27085 df-ttg 27523 |
This theorem is referenced by: ttgelitv 27538 |
Copyright terms: Public domain | W3C validator |