Step | Hyp | Ref
| Expression |
1 | | ttgval.n |
. . . . 5
β’ πΊ = (toTGβπ») |
2 | | ttgitvval.b |
. . . . 5
β’ π = (Baseβπ») |
3 | | ttgitvval.m |
. . . . 5
β’ β =
(-gβπ») |
4 | | ttgitvval.s |
. . . . 5
β’ Β· = (
Β·π βπ») |
5 | | ttgitvval.i |
. . . . 5
β’ πΌ = (ItvβπΊ) |
6 | 1, 2, 3, 4, 5 | ttgval 28390 |
. . . 4
β’ (π» β π β (πΊ = ((π» sSet β¨(Itvβndx), (π₯ β π, π¦ β π β¦ {π§ β π β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})β©) sSet β¨(LineGβndx),
(π₯ β π, π¦ β π β¦ {π§ β π β£ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))})β©) β§ πΌ = (π₯ β π, π¦ β π β¦ {π§ β π β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))}))) |
7 | 6 | simprd 495 |
. . 3
β’ (π» β π β πΌ = (π₯ β π, π¦ β π β¦ {π§ β π β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})) |
8 | 7 | 3ad2ant1 1132 |
. 2
β’ ((π» β π β§ π β π β§ π β π) β πΌ = (π₯ β π, π¦ β π β¦ {π§ β π β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))})) |
9 | | simprl 768 |
. . . . . 6
β’ (((π» β π β§ π β π β§ π β π) β§ (π₯ = π β§ π¦ = π)) β π₯ = π) |
10 | 9 | oveq2d 7428 |
. . . . 5
β’ (((π» β π β§ π β π β§ π β π) β§ (π₯ = π β§ π¦ = π)) β (π§ β π₯) = (π§ β π)) |
11 | | simprr 770 |
. . . . . . 7
β’ (((π» β π β§ π β π β§ π β π) β§ (π₯ = π β§ π¦ = π)) β π¦ = π) |
12 | 11, 9 | oveq12d 7430 |
. . . . . 6
β’ (((π» β π β§ π β π β§ π β π) β§ (π₯ = π β§ π¦ = π)) β (π¦ β π₯) = (π β π)) |
13 | 12 | oveq2d 7428 |
. . . . 5
β’ (((π» β π β§ π β π β§ π β π) β§ (π₯ = π β§ π¦ = π)) β (π Β· (π¦ β π₯)) = (π Β· (π β π))) |
14 | 10, 13 | eqeq12d 2747 |
. . . 4
β’ (((π» β π β§ π β π β§ π β π) β§ (π₯ = π β§ π¦ = π)) β ((π§ β π₯) = (π Β· (π¦ β π₯)) β (π§ β π) = (π Β· (π β π)))) |
15 | 14 | rexbidv 3177 |
. . 3
β’ (((π» β π β§ π β π β§ π β π) β§ (π₯ = π β§ π¦ = π)) β (βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯)) β βπ β (0[,]1)(π§ β π) = (π Β· (π β π)))) |
16 | 15 | rabbidv 3439 |
. 2
β’ (((π» β π β§ π β π β§ π β π) β§ (π₯ = π β§ π¦ = π)) β {π§ β π β£ βπ β (0[,]1)(π§ β π₯) = (π Β· (π¦ β π₯))} = {π§ β π β£ βπ β (0[,]1)(π§ β π) = (π Β· (π β π))}) |
17 | | simp2 1136 |
. 2
β’ ((π» β π β§ π β π β§ π β π) β π β π) |
18 | | simp3 1137 |
. 2
β’ ((π» β π β§ π β π β§ π β π) β π β π) |
19 | 2 | fvexi 6906 |
. . . 4
β’ π β V |
20 | 19 | rabex 5333 |
. . 3
β’ {π§ β π β£ βπ β (0[,]1)(π§ β π) = (π Β· (π β π))} β V |
21 | 20 | a1i 11 |
. 2
β’ ((π» β π β§ π β π β§ π β π) β {π§ β π β£ βπ β (0[,]1)(π§ β π) = (π Β· (π β π))} β V) |
22 | 8, 16, 17, 18, 21 | ovmpod 7563 |
1
β’ ((π» β π β§ π β π β§ π β π) β (ππΌπ) = {π§ β π β£ βπ β (0[,]1)(π§ β π) = (π Β· (π β π))}) |