| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ttgitvval | Structured version Visualization version GIF version | ||
| Description: Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) |
| Ref | Expression |
|---|---|
| ttgval.n | ⊢ 𝐺 = (toTG‘𝐻) |
| ttgitvval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ttgitvval.b | ⊢ 𝑃 = (Base‘𝐻) |
| ttgitvval.m | ⊢ − = (-g‘𝐻) |
| ttgitvval.s | ⊢ · = ( ·𝑠 ‘𝐻) |
| Ref | Expression |
|---|---|
| ttgitvval | ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋𝐼𝑌) = {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ttgval.n | . . . . 5 ⊢ 𝐺 = (toTG‘𝐻) | |
| 2 | ttgitvval.b | . . . . 5 ⊢ 𝑃 = (Base‘𝐻) | |
| 3 | ttgitvval.m | . . . . 5 ⊢ − = (-g‘𝐻) | |
| 4 | ttgitvval.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝐻) | |
| 5 | ttgitvval.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 6 | 1, 2, 3, 4, 5 | ttgval 28854 | . . . 4 ⊢ (𝐻 ∈ 𝑉 → (𝐺 = ((𝐻 sSet 〈(Itv‘ndx), (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})〉) sSet 〈(LineG‘ndx), (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})〉) ∧ 𝐼 = (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))}))) |
| 7 | 6 | simprd 495 | . . 3 ⊢ (𝐻 ∈ 𝑉 → 𝐼 = (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
| 8 | 7 | 3ad2ant1 1133 | . 2 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝐼 = (𝑥 ∈ 𝑃, 𝑦 ∈ 𝑃 ↦ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))})) |
| 9 | simprl 770 | . . . . . 6 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑥 = 𝑋) | |
| 10 | 9 | oveq2d 7368 | . . . . 5 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑧 − 𝑥) = (𝑧 − 𝑋)) |
| 11 | simprr 772 | . . . . . . 7 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
| 12 | 11, 9 | oveq12d 7370 | . . . . . 6 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑦 − 𝑥) = (𝑌 − 𝑋)) |
| 13 | 12 | oveq2d 7368 | . . . . 5 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑘 · (𝑦 − 𝑥)) = (𝑘 · (𝑌 − 𝑋))) |
| 14 | 10, 13 | eqeq12d 2749 | . . . 4 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)) ↔ (𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) |
| 15 | 14 | rexbidv 3157 | . . 3 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) |
| 16 | 15 | rabbidv 3403 | . 2 ⊢ (((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑥) = (𝑘 · (𝑦 − 𝑥))} = {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))}) |
| 17 | simp2 1137 | . 2 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝑋 ∈ 𝑃) | |
| 18 | simp3 1138 | . 2 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝑌 ∈ 𝑃) | |
| 19 | 2 | fvexi 6842 | . . . 4 ⊢ 𝑃 ∈ V |
| 20 | 19 | rabex 5279 | . . 3 ⊢ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))} ∈ V |
| 21 | 20 | a1i 11 | . 2 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))} ∈ V) |
| 22 | 8, 16, 17, 18, 21 | ovmpod 7504 | 1 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋𝐼𝑌) = {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 {crab 3396 Vcvv 3437 〈cop 4581 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 0cc0 11013 1c1 11014 [,]cicc 13250 sSet csts 17076 ndxcnx 17106 Basecbs 17122 ·𝑠 cvsca 17167 -gcsg 18850 Itvcitv 28412 LineGclng 28413 toTGcttg 28852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-dec 12595 df-sets 17077 df-slot 17095 df-ndx 17107 df-itv 28414 df-lng 28415 df-ttg 28853 |
| This theorem is referenced by: ttgelitv 28862 |
| Copyright terms: Public domain | W3C validator |