MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttgitvval Structured version   Visualization version   GIF version

Theorem ttgitvval 28897
Description: Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttgitvval.i 𝐼 = (Itv‘𝐺)
ttgitvval.b 𝑃 = (Base‘𝐻)
ttgitvval.m = (-g𝐻)
ttgitvval.s · = ( ·𝑠𝐻)
Assertion
Ref Expression
ttgitvval ((𝐻𝑉𝑋𝑃𝑌𝑃) → (𝑋𝐼𝑌) = {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))})
Distinct variable groups:   𝑧,𝑘,   𝑧, ·   𝑘,𝐻,𝑧   𝑃,𝑘,𝑧   𝑘,𝑉,𝑧   𝑘,𝑋,𝑧   𝑘,𝑌,𝑧
Allowed substitution hints:   · (𝑘)   𝐺(𝑧,𝑘)   𝐼(𝑧,𝑘)

Proof of Theorem ttgitvval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ttgval.n . . . . 5 𝐺 = (toTG‘𝐻)
2 ttgitvval.b . . . . 5 𝑃 = (Base‘𝐻)
3 ttgitvval.m . . . . 5 = (-g𝐻)
4 ttgitvval.s . . . . 5 · = ( ·𝑠𝐻)
5 ttgitvval.i . . . . 5 𝐼 = (Itv‘𝐺)
61, 2, 3, 4, 5ttgval 28884 . . . 4 (𝐻𝑉 → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) ∧ 𝐼 = (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})))
76simprd 495 . . 3 (𝐻𝑉𝐼 = (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
873ad2ant1 1133 . 2 ((𝐻𝑉𝑋𝑃𝑌𝑃) → 𝐼 = (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
9 simprl 770 . . . . . 6 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
109oveq2d 7448 . . . . 5 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑧 𝑥) = (𝑧 𝑋))
11 simprr 772 . . . . . . 7 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
1211, 9oveq12d 7450 . . . . . 6 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑦 𝑥) = (𝑌 𝑋))
1312oveq2d 7448 . . . . 5 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑘 · (𝑦 𝑥)) = (𝑘 · (𝑌 𝑋)))
1410, 13eqeq12d 2752 . . . 4 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝑧 𝑥) = (𝑘 · (𝑦 𝑥)) ↔ (𝑧 𝑋) = (𝑘 · (𝑌 𝑋))))
1514rexbidv 3178 . . 3 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))))
1615rabbidv 3443 . 2 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))} = {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))})
17 simp2 1137 . 2 ((𝐻𝑉𝑋𝑃𝑌𝑃) → 𝑋𝑃)
18 simp3 1138 . 2 ((𝐻𝑉𝑋𝑃𝑌𝑃) → 𝑌𝑃)
192fvexi 6919 . . . 4 𝑃 ∈ V
2019rabex 5338 . . 3 {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))} ∈ V
2120a1i 11 . 2 ((𝐻𝑉𝑋𝑃𝑌𝑃) → {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))} ∈ V)
228, 16, 17, 18, 21ovmpod 7586 1 ((𝐻𝑉𝑋𝑃𝑌𝑃) → (𝑋𝐼𝑌) = {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1539  wcel 2107  wrex 3069  {crab 3435  Vcvv 3479  cop 4631  cfv 6560  (class class class)co 7432  cmpo 7434  0cc0 11156  1c1 11157  [,]cicc 13391   sSet csts 17201  ndxcnx 17231  Basecbs 17248   ·𝑠 cvsca 17302  -gcsg 18954  Itvcitv 28442  LineGclng 28443  toTGcttg 28882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-dec 12736  df-sets 17202  df-slot 17220  df-ndx 17232  df-itv 28444  df-lng 28445  df-ttg 28883
This theorem is referenced by:  ttgelitv  28898
  Copyright terms: Public domain W3C validator