MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttgitvval Structured version   Visualization version   GIF version

Theorem ttgitvval 28861
Description: Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttgitvval.i 𝐼 = (Itv‘𝐺)
ttgitvval.b 𝑃 = (Base‘𝐻)
ttgitvval.m = (-g𝐻)
ttgitvval.s · = ( ·𝑠𝐻)
Assertion
Ref Expression
ttgitvval ((𝐻𝑉𝑋𝑃𝑌𝑃) → (𝑋𝐼𝑌) = {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))})
Distinct variable groups:   𝑧,𝑘,   𝑧, ·   𝑘,𝐻,𝑧   𝑃,𝑘,𝑧   𝑘,𝑉,𝑧   𝑘,𝑋,𝑧   𝑘,𝑌,𝑧
Allowed substitution hints:   · (𝑘)   𝐺(𝑧,𝑘)   𝐼(𝑧,𝑘)

Proof of Theorem ttgitvval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ttgval.n . . . . 5 𝐺 = (toTG‘𝐻)
2 ttgitvval.b . . . . 5 𝑃 = (Base‘𝐻)
3 ttgitvval.m . . . . 5 = (-g𝐻)
4 ttgitvval.s . . . . 5 · = ( ·𝑠𝐻)
5 ttgitvval.i . . . . 5 𝐼 = (Itv‘𝐺)
61, 2, 3, 4, 5ttgval 28854 . . . 4 (𝐻𝑉 → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) ∧ 𝐼 = (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})))
76simprd 495 . . 3 (𝐻𝑉𝐼 = (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
873ad2ant1 1133 . 2 ((𝐻𝑉𝑋𝑃𝑌𝑃) → 𝐼 = (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
9 simprl 770 . . . . . 6 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
109oveq2d 7368 . . . . 5 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑧 𝑥) = (𝑧 𝑋))
11 simprr 772 . . . . . . 7 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
1211, 9oveq12d 7370 . . . . . 6 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑦 𝑥) = (𝑌 𝑋))
1312oveq2d 7368 . . . . 5 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑘 · (𝑦 𝑥)) = (𝑘 · (𝑌 𝑋)))
1410, 13eqeq12d 2749 . . . 4 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝑧 𝑥) = (𝑘 · (𝑦 𝑥)) ↔ (𝑧 𝑋) = (𝑘 · (𝑌 𝑋))))
1514rexbidv 3157 . . 3 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))))
1615rabbidv 3403 . 2 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))} = {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))})
17 simp2 1137 . 2 ((𝐻𝑉𝑋𝑃𝑌𝑃) → 𝑋𝑃)
18 simp3 1138 . 2 ((𝐻𝑉𝑋𝑃𝑌𝑃) → 𝑌𝑃)
192fvexi 6842 . . . 4 𝑃 ∈ V
2019rabex 5279 . . 3 {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))} ∈ V
2120a1i 11 . 2 ((𝐻𝑉𝑋𝑃𝑌𝑃) → {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))} ∈ V)
228, 16, 17, 18, 21ovmpod 7504 1 ((𝐻𝑉𝑋𝑃𝑌𝑃) → (𝑋𝐼𝑌) = {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1541  wcel 2113  wrex 3057  {crab 3396  Vcvv 3437  cop 4581  cfv 6486  (class class class)co 7352  cmpo 7354  0cc0 11013  1c1 11014  [,]cicc 13250   sSet csts 17076  ndxcnx 17106  Basecbs 17122   ·𝑠 cvsca 17167  -gcsg 18850  Itvcitv 28412  LineGclng 28413  toTGcttg 28852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-dec 12595  df-sets 17077  df-slot 17095  df-ndx 17107  df-itv 28414  df-lng 28415  df-ttg 28853
This theorem is referenced by:  ttgelitv  28862
  Copyright terms: Public domain W3C validator