MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttgitvval Structured version   Visualization version   GIF version

Theorem ttgitvval 28911
Description: Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttgitvval.i 𝐼 = (Itv‘𝐺)
ttgitvval.b 𝑃 = (Base‘𝐻)
ttgitvval.m = (-g𝐻)
ttgitvval.s · = ( ·𝑠𝐻)
Assertion
Ref Expression
ttgitvval ((𝐻𝑉𝑋𝑃𝑌𝑃) → (𝑋𝐼𝑌) = {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))})
Distinct variable groups:   𝑧,𝑘,   𝑧, ·   𝑘,𝐻,𝑧   𝑃,𝑘,𝑧   𝑘,𝑉,𝑧   𝑘,𝑋,𝑧   𝑘,𝑌,𝑧
Allowed substitution hints:   · (𝑘)   𝐺(𝑧,𝑘)   𝐼(𝑧,𝑘)

Proof of Theorem ttgitvval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ttgval.n . . . . 5 𝐺 = (toTG‘𝐻)
2 ttgitvval.b . . . . 5 𝑃 = (Base‘𝐻)
3 ttgitvval.m . . . . 5 = (-g𝐻)
4 ttgitvval.s . . . . 5 · = ( ·𝑠𝐻)
5 ttgitvval.i . . . . 5 𝐼 = (Itv‘𝐺)
61, 2, 3, 4, 5ttgval 28898 . . . 4 (𝐻𝑉 → (𝐺 = ((𝐻 sSet ⟨(Itv‘ndx), (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})⟩) sSet ⟨(LineG‘ndx), (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})⟩) ∧ 𝐼 = (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))})))
76simprd 495 . . 3 (𝐻𝑉𝐼 = (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
873ad2ant1 1132 . 2 ((𝐻𝑉𝑋𝑃𝑌𝑃) → 𝐼 = (𝑥𝑃, 𝑦𝑃 ↦ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))}))
9 simprl 771 . . . . . 6 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
109oveq2d 7447 . . . . 5 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑧 𝑥) = (𝑧 𝑋))
11 simprr 773 . . . . . . 7 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
1211, 9oveq12d 7449 . . . . . 6 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑦 𝑥) = (𝑌 𝑋))
1312oveq2d 7447 . . . . 5 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑘 · (𝑦 𝑥)) = (𝑘 · (𝑌 𝑋)))
1410, 13eqeq12d 2751 . . . 4 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝑧 𝑥) = (𝑘 · (𝑦 𝑥)) ↔ (𝑧 𝑋) = (𝑘 · (𝑌 𝑋))))
1514rexbidv 3177 . . 3 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥)) ↔ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))))
1615rabbidv 3441 . 2 (((𝐻𝑉𝑋𝑃𝑌𝑃) ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑥) = (𝑘 · (𝑦 𝑥))} = {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))})
17 simp2 1136 . 2 ((𝐻𝑉𝑋𝑃𝑌𝑃) → 𝑋𝑃)
18 simp3 1137 . 2 ((𝐻𝑉𝑋𝑃𝑌𝑃) → 𝑌𝑃)
192fvexi 6921 . . . 4 𝑃 ∈ V
2019rabex 5345 . . 3 {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))} ∈ V
2120a1i 11 . 2 ((𝐻𝑉𝑋𝑃𝑌𝑃) → {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))} ∈ V)
228, 16, 17, 18, 21ovmpod 7585 1 ((𝐻𝑉𝑋𝑃𝑌𝑃) → (𝑋𝐼𝑌) = {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1537  wcel 2106  wrex 3068  {crab 3433  Vcvv 3478  cop 4637  cfv 6563  (class class class)co 7431  cmpo 7433  0cc0 11153  1c1 11154  [,]cicc 13387   sSet csts 17197  ndxcnx 17227  Basecbs 17245   ·𝑠 cvsca 17302  -gcsg 18966  Itvcitv 28456  LineGclng 28457  toTGcttg 28896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-dec 12732  df-sets 17198  df-slot 17216  df-ndx 17228  df-itv 28458  df-lng 28459  df-ttg 28897
This theorem is referenced by:  ttgelitv  28912
  Copyright terms: Public domain W3C validator