MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrnloopALT Structured version   Visualization version   GIF version

Theorem usgrnloopALT 29133
Description: Alternate proof of usgrnloop 29132, not using umgrnloop 29038. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Proof shortened by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 17-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
usgrnloopv.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
usgrnloopALT (𝐺 ∈ USGraph → (∃𝑥 ∈ dom 𝐸(𝐸𝑥) = {𝑀, 𝑁} → 𝑀𝑁))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑀   𝑥,𝑁
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem usgrnloopALT
StepHypRef Expression
1 usgrnloopv.e . . . . . 6 𝐸 = (iEdg‘𝐺)
2 eqid 2726 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
31, 2usgredgprv 29124 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) → ((𝐸𝑥) = {𝑀, 𝑁} → (𝑀 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))))
43imp 405 . . . 4 (((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸𝑥) = {𝑀, 𝑁}) → (𝑀 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))
51usgrnloopv 29130 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ 𝑀 ∈ (Vtx‘𝐺)) → ((𝐸𝑥) = {𝑀, 𝑁} → 𝑀𝑁))
65ex 411 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝑀 ∈ (Vtx‘𝐺) → ((𝐸𝑥) = {𝑀, 𝑁} → 𝑀𝑁)))
76com23 86 . . . . . . . 8 (𝐺 ∈ USGraph → ((𝐸𝑥) = {𝑀, 𝑁} → (𝑀 ∈ (Vtx‘𝐺) → 𝑀𝑁)))
87adantr 479 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) → ((𝐸𝑥) = {𝑀, 𝑁} → (𝑀 ∈ (Vtx‘𝐺) → 𝑀𝑁)))
98imp 405 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸𝑥) = {𝑀, 𝑁}) → (𝑀 ∈ (Vtx‘𝐺) → 𝑀𝑁))
109com12 32 . . . . 5 (𝑀 ∈ (Vtx‘𝐺) → (((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸𝑥) = {𝑀, 𝑁}) → 𝑀𝑁))
1110adantr 479 . . . 4 ((𝑀 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)) → (((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸𝑥) = {𝑀, 𝑁}) → 𝑀𝑁))
124, 11mpcom 38 . . 3 (((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸𝑥) = {𝑀, 𝑁}) → 𝑀𝑁)
1312ex 411 . 2 ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) → ((𝐸𝑥) = {𝑀, 𝑁} → 𝑀𝑁))
1413rexlimdva 3145 1 (𝐺 ∈ USGraph → (∃𝑥 ∈ dom 𝐸(𝐸𝑥) = {𝑀, 𝑁} → 𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wne 2930  wrex 3060  {cpr 4625  dom cdm 5672  cfv 6543  Vtxcvtx 28926  iEdgciedg 28927  USGraphcusgr 29079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8723  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-dju 9934  df-card 9972  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12256  df-2 12318  df-n0 12516  df-z 12602  df-uz 12866  df-fz 13530  df-hash 14340  df-uhgr 28988  df-upgr 29012  df-umgr 29013  df-usgr 29081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator