![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgrnloopALT | Structured version Visualization version GIF version |
Description: Alternate proof of usgrnloop 28459, not using umgrnloop 28368. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Proof shortened by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 17-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
usgrnloopv.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
usgrnloopALT | ⊢ (𝐺 ∈ USGraph → (∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrnloopv.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
2 | eqid 2733 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | 1, 2 | usgredgprv 28451 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) → ((𝐸‘𝑥) = {𝑀, 𝑁} → (𝑀 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))) |
4 | 3 | imp 408 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸‘𝑥) = {𝑀, 𝑁}) → (𝑀 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) |
5 | 1 | usgrnloopv 28457 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ USGraph ∧ 𝑀 ∈ (Vtx‘𝐺)) → ((𝐸‘𝑥) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
6 | 5 | ex 414 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → (𝑀 ∈ (Vtx‘𝐺) → ((𝐸‘𝑥) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁))) |
7 | 6 | com23 86 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → ((𝐸‘𝑥) = {𝑀, 𝑁} → (𝑀 ∈ (Vtx‘𝐺) → 𝑀 ≠ 𝑁))) |
8 | 7 | adantr 482 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) → ((𝐸‘𝑥) = {𝑀, 𝑁} → (𝑀 ∈ (Vtx‘𝐺) → 𝑀 ≠ 𝑁))) |
9 | 8 | imp 408 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸‘𝑥) = {𝑀, 𝑁}) → (𝑀 ∈ (Vtx‘𝐺) → 𝑀 ≠ 𝑁)) |
10 | 9 | com12 32 | . . . . 5 ⊢ (𝑀 ∈ (Vtx‘𝐺) → (((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸‘𝑥) = {𝑀, 𝑁}) → 𝑀 ≠ 𝑁)) |
11 | 10 | adantr 482 | . . . 4 ⊢ ((𝑀 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)) → (((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸‘𝑥) = {𝑀, 𝑁}) → 𝑀 ≠ 𝑁)) |
12 | 4, 11 | mpcom 38 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸‘𝑥) = {𝑀, 𝑁}) → 𝑀 ≠ 𝑁) |
13 | 12 | ex 414 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) → ((𝐸‘𝑥) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
14 | 13 | rexlimdva 3156 | 1 ⊢ (𝐺 ∈ USGraph → (∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∃wrex 3071 {cpr 4631 dom cdm 5677 ‘cfv 6544 Vtxcvtx 28256 iEdgciedg 28257 USGraphcusgr 28409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-dju 9896 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-hash 14291 df-uhgr 28318 df-upgr 28342 df-umgr 28343 df-usgr 28411 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |