Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > usgrnloopALT | Structured version Visualization version GIF version |
Description: Alternate proof of usgrnloop 27614, not using umgrnloop 27523. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Proof shortened by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 17-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
usgrnloopv.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
usgrnloopALT | ⊢ (𝐺 ∈ USGraph → (∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrnloopv.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
2 | eqid 2736 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | 1, 2 | usgredgprv 27606 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) → ((𝐸‘𝑥) = {𝑀, 𝑁} → (𝑀 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))) |
4 | 3 | imp 408 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸‘𝑥) = {𝑀, 𝑁}) → (𝑀 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) |
5 | 1 | usgrnloopv 27612 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ USGraph ∧ 𝑀 ∈ (Vtx‘𝐺)) → ((𝐸‘𝑥) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
6 | 5 | ex 414 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → (𝑀 ∈ (Vtx‘𝐺) → ((𝐸‘𝑥) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁))) |
7 | 6 | com23 86 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → ((𝐸‘𝑥) = {𝑀, 𝑁} → (𝑀 ∈ (Vtx‘𝐺) → 𝑀 ≠ 𝑁))) |
8 | 7 | adantr 482 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) → ((𝐸‘𝑥) = {𝑀, 𝑁} → (𝑀 ∈ (Vtx‘𝐺) → 𝑀 ≠ 𝑁))) |
9 | 8 | imp 408 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸‘𝑥) = {𝑀, 𝑁}) → (𝑀 ∈ (Vtx‘𝐺) → 𝑀 ≠ 𝑁)) |
10 | 9 | com12 32 | . . . . 5 ⊢ (𝑀 ∈ (Vtx‘𝐺) → (((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸‘𝑥) = {𝑀, 𝑁}) → 𝑀 ≠ 𝑁)) |
11 | 10 | adantr 482 | . . . 4 ⊢ ((𝑀 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)) → (((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸‘𝑥) = {𝑀, 𝑁}) → 𝑀 ≠ 𝑁)) |
12 | 4, 11 | mpcom 38 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸‘𝑥) = {𝑀, 𝑁}) → 𝑀 ≠ 𝑁) |
13 | 12 | ex 414 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) → ((𝐸‘𝑥) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
14 | 13 | rexlimdva 3149 | 1 ⊢ (𝐺 ∈ USGraph → (∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∃wrex 3071 {cpr 4567 dom cdm 5600 ‘cfv 6458 Vtxcvtx 27411 iEdgciedg 27412 USGraphcusgr 27564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-oadd 8332 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-dju 9703 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-n0 12280 df-z 12366 df-uz 12629 df-fz 13286 df-hash 14091 df-uhgr 27473 df-upgr 27497 df-umgr 27498 df-usgr 27566 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |