![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgrnloopALT | Structured version Visualization version GIF version |
Description: Alternate proof of usgrnloop 28989, not using umgrnloop 28895. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Proof shortened by Alexander van der Vekens, 20-Mar-2018.) (Revised by AV, 17-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
usgrnloopv.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
usgrnloopALT | ⊢ (𝐺 ∈ USGraph → (∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrnloopv.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
2 | eqid 2727 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | 1, 2 | usgredgprv 28981 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) → ((𝐸‘𝑥) = {𝑀, 𝑁} → (𝑀 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))) |
4 | 3 | imp 406 | . . . 4 ⊢ (((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸‘𝑥) = {𝑀, 𝑁}) → (𝑀 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))) |
5 | 1 | usgrnloopv 28987 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ USGraph ∧ 𝑀 ∈ (Vtx‘𝐺)) → ((𝐸‘𝑥) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
6 | 5 | ex 412 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → (𝑀 ∈ (Vtx‘𝐺) → ((𝐸‘𝑥) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁))) |
7 | 6 | com23 86 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → ((𝐸‘𝑥) = {𝑀, 𝑁} → (𝑀 ∈ (Vtx‘𝐺) → 𝑀 ≠ 𝑁))) |
8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) → ((𝐸‘𝑥) = {𝑀, 𝑁} → (𝑀 ∈ (Vtx‘𝐺) → 𝑀 ≠ 𝑁))) |
9 | 8 | imp 406 | . . . . . 6 ⊢ (((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸‘𝑥) = {𝑀, 𝑁}) → (𝑀 ∈ (Vtx‘𝐺) → 𝑀 ≠ 𝑁)) |
10 | 9 | com12 32 | . . . . 5 ⊢ (𝑀 ∈ (Vtx‘𝐺) → (((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸‘𝑥) = {𝑀, 𝑁}) → 𝑀 ≠ 𝑁)) |
11 | 10 | adantr 480 | . . . 4 ⊢ ((𝑀 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)) → (((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸‘𝑥) = {𝑀, 𝑁}) → 𝑀 ≠ 𝑁)) |
12 | 4, 11 | mpcom 38 | . . 3 ⊢ (((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸‘𝑥) = {𝑀, 𝑁}) → 𝑀 ≠ 𝑁) |
13 | 12 | ex 412 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑥 ∈ dom 𝐸) → ((𝐸‘𝑥) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
14 | 13 | rexlimdva 3150 | 1 ⊢ (𝐺 ∈ USGraph → (∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑀, 𝑁} → 𝑀 ≠ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∃wrex 3065 {cpr 4626 dom cdm 5672 ‘cfv 6542 Vtxcvtx 28783 iEdgciedg 28784 USGraphcusgr 28936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-dju 9910 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-n0 12489 df-z 12575 df-uz 12839 df-fz 13503 df-hash 14308 df-uhgr 28845 df-upgr 28869 df-umgr 28870 df-usgr 28938 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |