MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrnloop Structured version   Visualization version   GIF version

Theorem umgrnloop 29071
Description: In a multigraph, there is no loop, i.e. no edge connecting a vertex with itself. (Contributed by Alexander van der Vekens, 19-Aug-2017.) (Revised by AV, 11-Dec-2020.)
Hypothesis
Ref Expression
umgrnloopv.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
umgrnloop (𝐺 ∈ UMGraph → (∃𝑥 ∈ dom 𝐸(𝐸𝑥) = {𝑀, 𝑁} → 𝑀𝑁))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑀   𝑥,𝑁
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem umgrnloop
StepHypRef Expression
1 umgrnloopv.e . . . . 5 𝐸 = (iEdg‘𝐺)
2 eqid 2729 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
31, 2umgredgprv 29070 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸) → ((𝐸𝑥) = {𝑀, 𝑁} → (𝑀 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺))))
43imp 406 . . 3 (((𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸𝑥) = {𝑀, 𝑁}) → (𝑀 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))
51umgrnloopv 29069 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑀 ∈ (Vtx‘𝐺)) → ((𝐸𝑥) = {𝑀, 𝑁} → 𝑀𝑁))
65ex 412 . . . . . . . 8 (𝐺 ∈ UMGraph → (𝑀 ∈ (Vtx‘𝐺) → ((𝐸𝑥) = {𝑀, 𝑁} → 𝑀𝑁)))
76com23 86 . . . . . . 7 (𝐺 ∈ UMGraph → ((𝐸𝑥) = {𝑀, 𝑁} → (𝑀 ∈ (Vtx‘𝐺) → 𝑀𝑁)))
87adantr 480 . . . . . 6 ((𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸) → ((𝐸𝑥) = {𝑀, 𝑁} → (𝑀 ∈ (Vtx‘𝐺) → 𝑀𝑁)))
98imp 406 . . . . 5 (((𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸𝑥) = {𝑀, 𝑁}) → (𝑀 ∈ (Vtx‘𝐺) → 𝑀𝑁))
109com12 32 . . . 4 (𝑀 ∈ (Vtx‘𝐺) → (((𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸𝑥) = {𝑀, 𝑁}) → 𝑀𝑁))
1110adantr 480 . . 3 ((𝑀 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)) → (((𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸𝑥) = {𝑀, 𝑁}) → 𝑀𝑁))
124, 11mpcom 38 . 2 (((𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom 𝐸) ∧ (𝐸𝑥) = {𝑀, 𝑁}) → 𝑀𝑁)
1312rexlimdva2 3132 1 (𝐺 ∈ UMGraph → (∃𝑥 ∈ dom 𝐸(𝐸𝑥) = {𝑀, 𝑁} → 𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {cpr 4581  dom cdm 5623  cfv 6486  Vtxcvtx 28959  iEdgciedg 28960  UMGraphcumgr 29044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-hash 14256  df-uhgr 29021  df-upgr 29045  df-umgr 29046
This theorem is referenced by:  umgrnloop0  29072  usgrnloop  29165
  Copyright terms: Public domain W3C validator