MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnp2 Structured version   Visualization version   GIF version

Theorem metcnp2 24450
Description: Two ways to say a mapping from metric 𝐢 to metric 𝐷 is continuous at point 𝑃. The distance arguments are swapped compared to metcnp 24449 (and Munkres' metcn 24451) for compatibility with df-lm 23132. Definition 1.3-3 of [Kreyszig] p. 20. (Contributed by NM, 4-Jun-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpenβ€˜πΆ)
metcn.4 𝐾 = (MetOpenβ€˜π·)
Assertion
Ref Expression
metcnp2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦))))
Distinct variable groups:   𝑦,𝑀,𝑧,𝐹   𝑀,𝐽,𝑦,𝑧   𝑀,𝐾,𝑦,𝑧   𝑀,𝑋,𝑦,𝑧   𝑀,π‘Œ,𝑦,𝑧   𝑀,𝐢,𝑦,𝑧   𝑀,𝐷,𝑦,𝑧   𝑀,𝑃,𝑦,𝑧

Proof of Theorem metcnp2
StepHypRef Expression
1 metcn.2 . . 3 𝐽 = (MetOpenβ€˜πΆ)
2 metcn.4 . . 3 𝐾 = (MetOpenβ€˜π·)
31, 2metcnp 24449 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦))))
4 simpl1 1189 . . . . . . . . . . 11 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ 𝐢 ∈ (∞Metβ€˜π‘‹))
54ad2antrr 725 . . . . . . . . . 10 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝐢 ∈ (∞Metβ€˜π‘‹))
6 simpl3 1191 . . . . . . . . . . 11 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ 𝑃 ∈ 𝑋)
76ad2antrr 725 . . . . . . . . . 10 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝑃 ∈ 𝑋)
8 simpr 484 . . . . . . . . . 10 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝑀 ∈ 𝑋)
9 xmetsym 24252 . . . . . . . . . 10 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋) β†’ (𝑃𝐢𝑀) = (𝑀𝐢𝑃))
105, 7, 8, 9syl3anc 1369 . . . . . . . . 9 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (𝑃𝐢𝑀) = (𝑀𝐢𝑃))
1110breq1d 5158 . . . . . . . 8 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ ((𝑃𝐢𝑀) < 𝑧 ↔ (𝑀𝐢𝑃) < 𝑧))
12 simpl2 1190 . . . . . . . . . . 11 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ 𝐷 ∈ (∞Metβ€˜π‘Œ))
1312ad2antrr 725 . . . . . . . . . 10 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝐷 ∈ (∞Metβ€˜π‘Œ))
14 simpllr 775 . . . . . . . . . . 11 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
1514, 7ffvelcdmd 7095 . . . . . . . . . 10 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (πΉβ€˜π‘ƒ) ∈ π‘Œ)
1614, 8ffvelcdmd 7095 . . . . . . . . . 10 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (πΉβ€˜π‘€) ∈ π‘Œ)
17 xmetsym 24252 . . . . . . . . . 10 ((𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ (πΉβ€˜π‘ƒ) ∈ π‘Œ ∧ (πΉβ€˜π‘€) ∈ π‘Œ) β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) = ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)))
1813, 15, 16, 17syl3anc 1369 . . . . . . . . 9 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) = ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)))
1918breq1d 5158 . . . . . . . 8 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦 ↔ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦))
2011, 19imbi12d 344 . . . . . . 7 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦) ↔ ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦)))
2120ralbidva 3172 . . . . . 6 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ (βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦) ↔ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦)))
2221anassrs 467 . . . . 5 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+) β†’ (βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦) ↔ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦)))
2322rexbidva 3173 . . . 4 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝑦 ∈ ℝ+) β†’ (βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦) ↔ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦)))
2423ralbidva 3172 . . 3 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦) ↔ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦)))
2524pm5.32da 578 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ ((𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦)) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦))))
263, 25bitrd 279 1 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099  βˆ€wral 3058  βˆƒwrex 3067   class class class wbr 5148  βŸΆwf 6544  β€˜cfv 6548  (class class class)co 7420   < clt 11278  β„+crp 13006  βˆžMetcxmet 21263  MetOpencmopn 21268   CnP ccnp 23128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-map 8846  df-en 8964  df-dom 8965  df-sdom 8966  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-n0 12503  df-z 12589  df-uz 12853  df-q 12963  df-rp 13007  df-xneg 13124  df-xadd 13125  df-xmul 13126  df-topgen 17424  df-psmet 21270  df-xmet 21271  df-bl 21273  df-mopn 21274  df-top 22795  df-topon 22812  df-bases 22848  df-cnp 23131
This theorem is referenced by:  metcnpi2  24453  rlimcnp  26896
  Copyright terms: Public domain W3C validator