MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnp2 Structured version   Visualization version   GIF version

Theorem metcnp2 24050
Description: Two ways to say a mapping from metric 𝐢 to metric 𝐷 is continuous at point 𝑃. The distance arguments are swapped compared to metcnp 24049 (and Munkres' metcn 24051) for compatibility with df-lm 22732. Definition 1.3-3 of [Kreyszig] p. 20. (Contributed by NM, 4-Jun-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpenβ€˜πΆ)
metcn.4 𝐾 = (MetOpenβ€˜π·)
Assertion
Ref Expression
metcnp2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦))))
Distinct variable groups:   𝑦,𝑀,𝑧,𝐹   𝑀,𝐽,𝑦,𝑧   𝑀,𝐾,𝑦,𝑧   𝑀,𝑋,𝑦,𝑧   𝑀,π‘Œ,𝑦,𝑧   𝑀,𝐢,𝑦,𝑧   𝑀,𝐷,𝑦,𝑧   𝑀,𝑃,𝑦,𝑧

Proof of Theorem metcnp2
StepHypRef Expression
1 metcn.2 . . 3 𝐽 = (MetOpenβ€˜πΆ)
2 metcn.4 . . 3 𝐾 = (MetOpenβ€˜π·)
31, 2metcnp 24049 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦))))
4 simpl1 1191 . . . . . . . . . . 11 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ 𝐢 ∈ (∞Metβ€˜π‘‹))
54ad2antrr 724 . . . . . . . . . 10 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝐢 ∈ (∞Metβ€˜π‘‹))
6 simpl3 1193 . . . . . . . . . . 11 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ 𝑃 ∈ 𝑋)
76ad2antrr 724 . . . . . . . . . 10 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝑃 ∈ 𝑋)
8 simpr 485 . . . . . . . . . 10 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝑀 ∈ 𝑋)
9 xmetsym 23852 . . . . . . . . . 10 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋) β†’ (𝑃𝐢𝑀) = (𝑀𝐢𝑃))
105, 7, 8, 9syl3anc 1371 . . . . . . . . 9 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (𝑃𝐢𝑀) = (𝑀𝐢𝑃))
1110breq1d 5158 . . . . . . . 8 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ ((𝑃𝐢𝑀) < 𝑧 ↔ (𝑀𝐢𝑃) < 𝑧))
12 simpl2 1192 . . . . . . . . . . 11 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ 𝐷 ∈ (∞Metβ€˜π‘Œ))
1312ad2antrr 724 . . . . . . . . . 10 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝐷 ∈ (∞Metβ€˜π‘Œ))
14 simpllr 774 . . . . . . . . . . 11 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
1514, 7ffvelcdmd 7087 . . . . . . . . . 10 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (πΉβ€˜π‘ƒ) ∈ π‘Œ)
1614, 8ffvelcdmd 7087 . . . . . . . . . 10 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (πΉβ€˜π‘€) ∈ π‘Œ)
17 xmetsym 23852 . . . . . . . . . 10 ((𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ (πΉβ€˜π‘ƒ) ∈ π‘Œ ∧ (πΉβ€˜π‘€) ∈ π‘Œ) β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) = ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)))
1813, 15, 16, 17syl3anc 1371 . . . . . . . . 9 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) = ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)))
1918breq1d 5158 . . . . . . . 8 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦 ↔ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦))
2011, 19imbi12d 344 . . . . . . 7 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦) ↔ ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦)))
2120ralbidva 3175 . . . . . 6 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ (βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦) ↔ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦)))
2221anassrs 468 . . . . 5 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+) β†’ (βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦) ↔ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦)))
2322rexbidva 3176 . . . 4 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝑦 ∈ ℝ+) β†’ (βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦) ↔ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦)))
2423ralbidva 3175 . . 3 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦) ↔ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦)))
2524pm5.32da 579 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ ((𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦)) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦))))
263, 25bitrd 278 1 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070   class class class wbr 5148  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408   < clt 11247  β„+crp 12973  βˆžMetcxmet 20928  MetOpencmopn 20933   CnP ccnp 22728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-inf 9437  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-rp 12974  df-xneg 13091  df-xadd 13092  df-xmul 13093  df-topgen 17388  df-psmet 20935  df-xmet 20936  df-bl 20938  df-mopn 20939  df-top 22395  df-topon 22412  df-bases 22448  df-cnp 22731
This theorem is referenced by:  metcnpi2  24053  rlimcnp  26467
  Copyright terms: Public domain W3C validator