MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcnp2 Structured version   Visualization version   GIF version

Theorem metcnp2 24395
Description: Two ways to say a mapping from metric 𝐢 to metric 𝐷 is continuous at point 𝑃. The distance arguments are swapped compared to metcnp 24394 (and Munkres' metcn 24396) for compatibility with df-lm 23077. Definition 1.3-3 of [Kreyszig] p. 20. (Contributed by NM, 4-Jun-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpenβ€˜πΆ)
metcn.4 𝐾 = (MetOpenβ€˜π·)
Assertion
Ref Expression
metcnp2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦))))
Distinct variable groups:   𝑦,𝑀,𝑧,𝐹   𝑀,𝐽,𝑦,𝑧   𝑀,𝐾,𝑦,𝑧   𝑀,𝑋,𝑦,𝑧   𝑀,π‘Œ,𝑦,𝑧   𝑀,𝐢,𝑦,𝑧   𝑀,𝐷,𝑦,𝑧   𝑀,𝑃,𝑦,𝑧

Proof of Theorem metcnp2
StepHypRef Expression
1 metcn.2 . . 3 𝐽 = (MetOpenβ€˜πΆ)
2 metcn.4 . . 3 𝐾 = (MetOpenβ€˜π·)
31, 2metcnp 24394 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦))))
4 simpl1 1188 . . . . . . . . . . 11 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ 𝐢 ∈ (∞Metβ€˜π‘‹))
54ad2antrr 723 . . . . . . . . . 10 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝐢 ∈ (∞Metβ€˜π‘‹))
6 simpl3 1190 . . . . . . . . . . 11 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ 𝑃 ∈ 𝑋)
76ad2antrr 723 . . . . . . . . . 10 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝑃 ∈ 𝑋)
8 simpr 484 . . . . . . . . . 10 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝑀 ∈ 𝑋)
9 xmetsym 24197 . . . . . . . . . 10 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ 𝑋) β†’ (𝑃𝐢𝑀) = (𝑀𝐢𝑃))
105, 7, 8, 9syl3anc 1368 . . . . . . . . 9 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (𝑃𝐢𝑀) = (𝑀𝐢𝑃))
1110breq1d 5149 . . . . . . . 8 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ ((𝑃𝐢𝑀) < 𝑧 ↔ (𝑀𝐢𝑃) < 𝑧))
12 simpl2 1189 . . . . . . . . . . 11 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ 𝐷 ∈ (∞Metβ€˜π‘Œ))
1312ad2antrr 723 . . . . . . . . . 10 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝐷 ∈ (∞Metβ€˜π‘Œ))
14 simpllr 773 . . . . . . . . . . 11 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
1514, 7ffvelcdmd 7078 . . . . . . . . . 10 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (πΉβ€˜π‘ƒ) ∈ π‘Œ)
1614, 8ffvelcdmd 7078 . . . . . . . . . 10 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (πΉβ€˜π‘€) ∈ π‘Œ)
17 xmetsym 24197 . . . . . . . . . 10 ((𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ (πΉβ€˜π‘ƒ) ∈ π‘Œ ∧ (πΉβ€˜π‘€) ∈ π‘Œ) β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) = ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)))
1813, 15, 16, 17syl3anc 1368 . . . . . . . . 9 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) = ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)))
1918breq1d 5149 . . . . . . . 8 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦 ↔ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦))
2011, 19imbi12d 344 . . . . . . 7 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) ∧ 𝑀 ∈ 𝑋) β†’ (((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦) ↔ ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦)))
2120ralbidva 3167 . . . . . 6 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+)) β†’ (βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦) ↔ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦)))
2221anassrs 467 . . . . 5 (((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+) β†’ (βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦) ↔ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦)))
2322rexbidva 3168 . . . 4 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝑦 ∈ ℝ+) β†’ (βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦) ↔ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦)))
2423ralbidva 3167 . . 3 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦) ↔ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦)))
2524pm5.32da 578 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ ((𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑃𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘ƒ)𝐷(πΉβ€˜π‘€)) < 𝑦)) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦))))
263, 25bitrd 279 1 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((𝑀𝐢𝑃) < 𝑧 β†’ ((πΉβ€˜π‘€)𝐷(πΉβ€˜π‘ƒ)) < 𝑦))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053  βˆƒwrex 3062   class class class wbr 5139  βŸΆwf 6530  β€˜cfv 6534  (class class class)co 7402   < clt 11247  β„+crp 12975  βˆžMetcxmet 21219  MetOpencmopn 21224   CnP ccnp 23073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-sup 9434  df-inf 9435  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-rp 12976  df-xneg 13093  df-xadd 13094  df-xmul 13095  df-topgen 17394  df-psmet 21226  df-xmet 21227  df-bl 21229  df-mopn 21230  df-top 22740  df-topon 22757  df-bases 22793  df-cnp 23076
This theorem is referenced by:  metcnpi2  24398  rlimcnp  26837
  Copyright terms: Public domain W3C validator