Proof of Theorem metcnp2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | metcn.2 | . . 3
⊢ 𝐽 = (MetOpen‘𝐶) | 
| 2 |  | metcn.4 | . . 3
⊢ 𝐾 = (MetOpen‘𝐷) | 
| 3 | 1, 2 | metcnp 24554 | . 2
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹‘𝑃)𝐷(𝐹‘𝑤)) < 𝑦)))) | 
| 4 |  | simpl1 1192 | . . . . . . . . . . 11
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐶 ∈ (∞Met‘𝑋)) | 
| 5 | 4 | ad2antrr 726 | . . . . . . . . . 10
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+))
∧ 𝑤 ∈ 𝑋) → 𝐶 ∈ (∞Met‘𝑋)) | 
| 6 |  | simpl3 1194 | . . . . . . . . . . 11
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝑃 ∈ 𝑋) | 
| 7 | 6 | ad2antrr 726 | . . . . . . . . . 10
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+))
∧ 𝑤 ∈ 𝑋) → 𝑃 ∈ 𝑋) | 
| 8 |  | simpr 484 | . . . . . . . . . 10
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+))
∧ 𝑤 ∈ 𝑋) → 𝑤 ∈ 𝑋) | 
| 9 |  | xmetsym 24357 | . . . . . . . . . 10
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋) → (𝑃𝐶𝑤) = (𝑤𝐶𝑃)) | 
| 10 | 5, 7, 8, 9 | syl3anc 1373 | . . . . . . . . 9
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+))
∧ 𝑤 ∈ 𝑋) → (𝑃𝐶𝑤) = (𝑤𝐶𝑃)) | 
| 11 | 10 | breq1d 5153 | . . . . . . . 8
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+))
∧ 𝑤 ∈ 𝑋) → ((𝑃𝐶𝑤) < 𝑧 ↔ (𝑤𝐶𝑃) < 𝑧)) | 
| 12 |  | simpl2 1193 | . . . . . . . . . . 11
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → 𝐷 ∈ (∞Met‘𝑌)) | 
| 13 | 12 | ad2antrr 726 | . . . . . . . . . 10
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+))
∧ 𝑤 ∈ 𝑋) → 𝐷 ∈ (∞Met‘𝑌)) | 
| 14 |  | simpllr 776 | . . . . . . . . . . 11
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+))
∧ 𝑤 ∈ 𝑋) → 𝐹:𝑋⟶𝑌) | 
| 15 | 14, 7 | ffvelcdmd 7105 | . . . . . . . . . 10
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+))
∧ 𝑤 ∈ 𝑋) → (𝐹‘𝑃) ∈ 𝑌) | 
| 16 | 14, 8 | ffvelcdmd 7105 | . . . . . . . . . 10
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+))
∧ 𝑤 ∈ 𝑋) → (𝐹‘𝑤) ∈ 𝑌) | 
| 17 |  | xmetsym 24357 | . . . . . . . . . 10
⊢ ((𝐷 ∈ (∞Met‘𝑌) ∧ (𝐹‘𝑃) ∈ 𝑌 ∧ (𝐹‘𝑤) ∈ 𝑌) → ((𝐹‘𝑃)𝐷(𝐹‘𝑤)) = ((𝐹‘𝑤)𝐷(𝐹‘𝑃))) | 
| 18 | 13, 15, 16, 17 | syl3anc 1373 | . . . . . . . . 9
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+))
∧ 𝑤 ∈ 𝑋) → ((𝐹‘𝑃)𝐷(𝐹‘𝑤)) = ((𝐹‘𝑤)𝐷(𝐹‘𝑃))) | 
| 19 | 18 | breq1d 5153 | . . . . . . . 8
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+))
∧ 𝑤 ∈ 𝑋) → (((𝐹‘𝑃)𝐷(𝐹‘𝑤)) < 𝑦 ↔ ((𝐹‘𝑤)𝐷(𝐹‘𝑃)) < 𝑦)) | 
| 20 | 11, 19 | imbi12d 344 | . . . . . . 7
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+))
∧ 𝑤 ∈ 𝑋) → (((𝑃𝐶𝑤) < 𝑧 → ((𝐹‘𝑃)𝐷(𝐹‘𝑤)) < 𝑦) ↔ ((𝑤𝐶𝑃) < 𝑧 → ((𝐹‘𝑤)𝐷(𝐹‘𝑃)) < 𝑦))) | 
| 21 | 20 | ralbidva 3176 | . . . . . 6
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ (𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+))
→ (∀𝑤 ∈
𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹‘𝑃)𝐷(𝐹‘𝑤)) < 𝑦) ↔ ∀𝑤 ∈ 𝑋 ((𝑤𝐶𝑃) < 𝑧 → ((𝐹‘𝑤)𝐷(𝐹‘𝑃)) < 𝑦))) | 
| 22 | 21 | anassrs 467 | . . . . 5
⊢
(((((𝐶 ∈
(∞Met‘𝑋) ∧
𝐷 ∈
(∞Met‘𝑌) ∧
𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧 ∈ ℝ+)
→ (∀𝑤 ∈
𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹‘𝑃)𝐷(𝐹‘𝑤)) < 𝑦) ↔ ∀𝑤 ∈ 𝑋 ((𝑤𝐶𝑃) < 𝑧 → ((𝐹‘𝑤)𝐷(𝐹‘𝑃)) < 𝑦))) | 
| 23 | 22 | rexbidva 3177 | . . . 4
⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑦 ∈ ℝ+) →
(∃𝑧 ∈
ℝ+ ∀𝑤 ∈ 𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹‘𝑃)𝐷(𝐹‘𝑤)) < 𝑦) ↔ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑋 ((𝑤𝐶𝑃) < 𝑧 → ((𝐹‘𝑤)𝐷(𝐹‘𝑃)) < 𝑦))) | 
| 24 | 23 | ralbidva 3176 | . . 3
⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹‘𝑃)𝐷(𝐹‘𝑤)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑋 ((𝑤𝐶𝑃) < 𝑧 → ((𝐹‘𝑤)𝐷(𝐹‘𝑃)) < 𝑦))) | 
| 25 | 24 | pm5.32da 579 | . 2
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹‘𝑃)𝐷(𝐹‘𝑤)) < 𝑦)) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑋 ((𝑤𝐶𝑃) < 𝑧 → ((𝐹‘𝑤)𝐷(𝐹‘𝑃)) < 𝑦)))) | 
| 26 | 3, 25 | bitrd 279 | 1
⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑋 ((𝑤𝐶𝑃) < 𝑧 → ((𝐹‘𝑤)𝐷(𝐹‘𝑃)) < 𝑦)))) |