| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzldeplem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for zlmodzxzldep 48486. (Contributed by AV, 24-May-2019.) (Revised by AV, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| zlmodzxzldep.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
| zlmodzxzldep.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
| zlmodzxzldep.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
| zlmodzxzldeplem.f | ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} |
| Ref | Expression |
|---|---|
| zlmodzxzldeplem2 | ⊢ 𝐹 finSupp 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmodzxzldep.z | . . 3 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
| 2 | zlmodzxzldep.a | . . 3 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
| 3 | zlmodzxzldep.b | . . 3 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
| 4 | zlmodzxzldeplem.f | . . 3 ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} | |
| 5 | 1, 2, 3, 4 | zlmodzxzldeplem1 48482 | . 2 ⊢ 𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}) |
| 6 | elmapi 8799 | . . 3 ⊢ (𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}) → 𝐹:{𝐴, 𝐵}⟶ℤ) | |
| 7 | prfi 9250 | . . . 4 ⊢ {𝐴, 𝐵} ∈ Fin | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}) → {𝐴, 𝐵} ∈ Fin) |
| 9 | c0ex 11144 | . . . 4 ⊢ 0 ∈ V | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}) → 0 ∈ V) |
| 11 | 6, 8, 10 | fdmfifsupp 9302 | . 2 ⊢ (𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}) → 𝐹 finSupp 0) |
| 12 | 5, 11 | ax-mp 5 | 1 ⊢ 𝐹 finSupp 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3444 {cpr 4587 〈cop 4591 class class class wbr 5102 (class class class)co 7369 ↑m cmap 8776 Fincfn 8895 finSupp cfsupp 9288 0cc0 11044 1c1 11045 -cneg 11382 2c2 12217 3c3 12218 4c4 12219 6c6 12221 ℤcz 12505 ℤringczring 21388 freeLMod cfrlm 21688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 |
| This theorem is referenced by: zlmodzxzldep 48486 |
| Copyright terms: Public domain | W3C validator |