| Metamath
Proof Explorer Theorem List (p. 485 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | lcoel0 48401 | The zero vector is always a linear combination. (Contributed by AV, 12-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (0g‘𝑀) ∈ (𝑀 LinCo 𝑉)) | ||
| Theorem | lincsum 48402 | The sum of two linear combinations is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 4-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| ⊢ + = (+g‘𝑀) & ⊢ 𝑋 = (𝐴( linC ‘𝑀)𝑉) & ⊢ 𝑌 = (𝐵( linC ‘𝑀)𝑉) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ ✚ = (+g‘𝑆) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → (𝑋 + 𝑌) = ((𝐴 ∘f ✚ 𝐵)( linC ‘𝑀)𝑉)) | ||
| Theorem | lincscm 48403* | A linear combinations multiplied with a scalar is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 9-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| ⊢ ∙ = ( ·𝑠 ‘𝑀) & ⊢ · = (.r‘(Scalar‘𝑀)) & ⊢ 𝑋 = (𝐴( linC ‘𝑀)𝑉) & ⊢ 𝑅 = (Base‘(Scalar‘𝑀)) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ (𝑆 · (𝐴‘𝑥))) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑆 ∙ 𝑋) = (𝐹( linC ‘𝑀)𝑉)) | ||
| Theorem | lincsumcl 48404 | The sum of two linear combinations is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 4-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.) |
| ⊢ + = (+g‘𝑀) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉)) | ||
| Theorem | lincscmcl 48405 | The multiplication of a linear combination with a scalar is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 11-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.) |
| ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝑅 = (Base‘(Scalar‘𝑀)) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ (𝑀 LinCo 𝑉)) → (𝐶 · 𝐷) ∈ (𝑀 LinCo 𝑉)) | ||
| Theorem | lincsumscmcl 48406 | The sum of a linear combination and a multiplication of a linear combination with a scalar is a linear combination. (Contributed by AV, 11-Apr-2019.) |
| ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝑅 = (Base‘(Scalar‘𝑀)) & ⊢ + = (+g‘𝑀) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐶 ∈ 𝑅 ∧ 𝐷 ∈ (𝑀 LinCo 𝑉) ∧ 𝐵 ∈ (𝑀 LinCo 𝑉))) → ((𝐶 · 𝐷) + 𝐵) ∈ (𝑀 LinCo 𝑉)) | ||
| Theorem | lincolss 48407 | According to the statement in [Lang] p. 129, the set (LSubSp‘𝑀) of all linear combinations of a set of vectors V is a submodule (generated by V) of the module M. The elements of V are called generators of (LSubSp‘𝑀). (Contributed by AV, 12-Apr-2019.) |
| ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo 𝑉) ∈ (LSubSp‘𝑀)) | ||
| Theorem | ellcoellss 48408* | Every linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → ∀𝑥 ∈ (𝑀 LinCo 𝑉)𝑥 ∈ 𝑆) | ||
| Theorem | lcoss 48409 | A set of vectors of a module is a subset of the set of all linear combinations of the set. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ⊆ (𝑀 LinCo 𝑉)) | ||
| Theorem | lspsslco 48410 | Lemma for lspeqlco 48412. (Contributed by AV, 17-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ((LSpan‘𝑀)‘𝑉) ⊆ (𝑀 LinCo 𝑉)) | ||
| Theorem | lcosslsp 48411 | Lemma for lspeqlco 48412. (Contributed by AV, 20-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) ⊆ ((LSpan‘𝑀)‘𝑉)) | ||
| Theorem | lspeqlco 48412 | Equivalence of a span of a set of vectors of a left module defined as the intersection of all linear subspaces which each contain every vector in that set (see df-lsp 20893) and as the set of all linear combinations of the vectors of the set with finite support. (Contributed by AV, 20-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) = ((LSpan‘𝑀)‘𝑉)) | ||
According to the definition in [Lang] p. 129: "A subset S of a module M is said
to be linearly independent (over [the ring] A) if whenever we have a
linear combination ∑x ∈S axx which is equal to
0, then ax=0 for all x∈S." This definition does not care for
the finiteness of the set S (because the definition of a linear combination
in [Lang] p.129 does already assure that only a finite number of coefficients
can be 0 in the sum). Our definition df-lininds 48415 does also neither claim that
the subset must be finite, nor that almost all coefficients within the linear
combination are 0. If this is required, it must be explicitly stated as
precondition in the corresponding theorems. | ||
| Syntax | clininds 48413 | Extend class notation with the relation between a module and its linearly independent subsets. |
| class linIndS | ||
| Syntax | clindeps 48414 | Extend class notation with the relation between a module and its linearly dependent subsets. |
| class linDepS | ||
| Definition | df-lininds 48415* | Define the relation between a module and its linearly independent subsets. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 24-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ linIndS = {〈𝑠, 𝑚〉 ∣ (𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g‘𝑚)) → ∀𝑥 ∈ 𝑠 (𝑓‘𝑥) = (0g‘(Scalar‘𝑚))))} | ||
| Theorem | rellininds 48416 | The class defining the relation between a module and its linearly independent subsets is a relation. (Contributed by AV, 13-Apr-2019.) |
| ⊢ Rel linIndS | ||
| Definition | df-lindeps 48417* | Define the relation between a module and its linearly dependent subsets. (Contributed by AV, 26-Apr-2019.) |
| ⊢ linDepS = {〈𝑠, 𝑚〉 ∣ ¬ 𝑠 linIndS 𝑚} | ||
| Theorem | linindsv 48418 | The classes of the module and its linearly independent subsets are sets. (Contributed by AV, 13-Apr-2019.) |
| ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ V ∧ 𝑀 ∈ V)) | ||
| Theorem | islininds 48419* | The property of being a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) | ||
| Theorem | linindsi 48420* | The implications of being a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) | ||
| Theorem | linindslinci 48421* | The implications of being a linearly independent subset and a linear combination of this subset being 0. (Contributed by AV, 24-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑆 linIndS 𝑀 ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍)) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = 0 ) | ||
| Theorem | islinindfis 48422* | The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) | ||
| Theorem | islinindfiss 48423* | The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ Fin ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) | ||
| Theorem | linindscl 48424 | A linearly independent set is a subset of (the base set of) a module. (Contributed by AV, 13-Apr-2019.) |
| ⊢ (𝑆 linIndS 𝑀 → 𝑆 ∈ 𝒫 (Base‘𝑀)) | ||
| Theorem | lindepsnlininds 48425 | A linearly dependent subset is not a linearly independent subset. (Contributed by AV, 26-Apr-2019.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) | ||
| Theorem | islindeps 48426* | The property of being a linearly dependent subset. (Contributed by AV, 26-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈ (𝐸 ↑m 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠ 0 ))) | ||
| Theorem | lincext1 48427* | Property 1 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 29-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸 ↑m 𝑆)) | ||
| Theorem | lincext2 48428* | Property 2 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 ) | ||
| Theorem | lincext3 48429* | Property 3 of an extension of a linear combination. (Contributed by AV, 23-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠 ‘𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → (𝐹( linC ‘𝑀)𝑆) = 𝑍) | ||
| Theorem | lindslinindsimp1 48430* | Implication 1 for lindslininds 48437. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) (Proof shortened by II, 16-Feb-2023.) |
| ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) ⇒ ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))) | ||
| Theorem | lindslinindimp2lem1 48431* | Lemma 1 for lindslinindsimp2 48436. (Contributed by AV, 25-Apr-2019.) |
| ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) & ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝑌 ∈ 𝐵) | ||
| Theorem | lindslinindimp2lem2 48432* | Lemma 2 for lindslinindsimp2 48436. (Contributed by AV, 25-Apr-2019.) |
| ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) & ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))) | ||
| Theorem | lindslinindimp2lem3 48433* | Lemma 3 for lindslinindsimp2 48436. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) & ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 )) → 𝐺 finSupp 0 ) | ||
| Theorem | lindslinindimp2lem4 48434* | Lemma 4 for lindslinindsimp2 48436. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) (Proof shortened by II, 16-Feb-2023.) |
| ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) & ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠 ‘𝑀)𝑦))) = (𝑌( ·𝑠 ‘𝑀)𝑥)) | ||
| Theorem | lindslinindsimp2lem5 48435* | Lemma 5 for lindslinindsimp2 48436. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠 ‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓‘𝑥) = 0 ))) | ||
| Theorem | lindslinindsimp2 48436* | Implication 2 for lindslininds 48437. (Contributed by AV, 26-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) ⇒ ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → ((𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) | ||
| Theorem | lindslininds 48437 | Equivalence of definitions df-linds 21732 and df-lininds 48415 for (linear) independence for (left) modules. (Contributed by AV, 26-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → (𝑆 linIndS 𝑀 ↔ 𝑆 ∈ (LIndS‘𝑀))) | ||
| Theorem | linds0 48438 | The empty set is always a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ (𝑀 ∈ 𝑉 → ∅ linIndS 𝑀) | ||
| Theorem | el0ldep 48439 | A set containing the zero element of a module is always linearly dependent, if the underlying ring has at least two elements. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀) | ||
| Theorem | el0ldepsnzr 48440 | A set containing the zero element of a module over a nonzero ring is always linearly dependent. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.) |
| ⊢ (((𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ NzRing) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀) | ||
| Theorem | lindsrng01 48441 | Any subset of a module is always linearly independent if the underlying ring has at most one element. Since the underlying ring cannot be the empty set (see lmodsn0 20795), this means that the underlying ring has only one element, so it is a zero ring. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ ((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀) | ||
| Theorem | lindszr 48442 | Any subset of a module over a zero ring is always linearly independent. (Contributed by AV, 27-Apr-2019.) |
| ⊢ ((𝑀 ∈ LMod ∧ ¬ (Scalar‘𝑀) ∈ NzRing ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → 𝑆 linIndS 𝑀) | ||
| Theorem | snlindsntorlem 48443* | Lemma for snlindsntor 48444. (Contributed by AV, 15-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) → ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) | ||
| Theorem | snlindsntor 48444* | A singleton is linearly independent iff it does not contain a torsion element. According to Wikipedia ("Torsion (algebra)", 15-Apr-2019, https://en.wikipedia.org/wiki/Torsion_(algebra)): "An element m of a module M over a ring R is called a torsion element of the module if there exists a regular element r of the ring (an element that is neither a left nor a right zero divisor) that annihilates m, i.e., (𝑟 · 𝑚) = 0. In an integral domain (a commutative ring without zero divisors), every nonzero element is regular, so a torsion element of a module over an integral domain is one annihilated by a nonzero element of the integral domain." Analogously, the definition in [Lang] p. 147 states that "An element x of [a module] E [over a ring R] is called a torsion element if there exists 𝑎 ∈ 𝑅, 𝑎 ≠ 0, such that 𝑎 · 𝑥 = 0. This definition includes the zero element of the module. Some authors, however, exclude the zero element from the definition of torsion elements. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ {𝑋} linIndS 𝑀)) | ||
| Theorem | ldepsprlem 48445 | Lemma for ldepspr 48446. (Contributed by AV, 16-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → (𝑋 = (𝐴 · 𝑌) → (( 1 · 𝑋)(+g‘𝑀)((𝑁‘𝐴) · 𝑌)) = 𝑍)) | ||
| Theorem | ldepspr 48446 | If a vector is a scalar multiple of another vector, the (unordered pair containing the) two vectors are linearly dependent. (Contributed by AV, 16-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) → ((𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌)) → {𝑋, 𝑌} linDepS 𝑀)) | ||
| Theorem | lincresunit3lem3 48447 | Lemma 3 for lincresunit3 48454. (Contributed by AV, 18-May-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐴 ∈ 𝑈) → (((𝑁‘𝐴) · 𝑋) = ((𝑁‘𝐴) · 𝑌) ↔ 𝑋 = 𝑌)) | ||
| Theorem | lincresunitlem1 48448 | Lemma 1 for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝐼‘(𝑁‘(𝐹‘𝑋))) ∈ 𝐸) | ||
| Theorem | lincresunitlem2 48449 | Lemma for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑌)) ∈ 𝐸) | ||
| Theorem | lincresunit1 48450* | Property 1 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) | ||
| Theorem | lincresunit2 48451* | Property 2 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝐺 finSupp 0 ) | ||
| Theorem | lincresunit3lem1 48452* | Lemma 1 for lincresunit3 48454. (Contributed by AV, 17-May-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹‘𝑋))( ·𝑠 ‘𝑀)((𝐺‘𝑧)( ·𝑠 ‘𝑀)𝑧)) = ((𝐹‘𝑧)( ·𝑠 ‘𝑀)𝑧)) | ||
| Theorem | lincresunit3lem2 48453* | Lemma 2 for lincresunit3 48454. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((𝑁‘(𝐹‘𝑋))( ·𝑠 ‘𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑧)( ·𝑠 ‘𝑀)𝑧)))) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))) | ||
| Theorem | lincresunit3 48454* | Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋) | ||
| Theorem | lincreslvec3 48455* | Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋) | ||
| Theorem | islindeps2 48456* | Conditions for being a linearly dependent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (∃𝑠 ∈ 𝑆 ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀)) | ||
| Theorem | islininds2 48457* | Implication of being a linearly independent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (𝑆 linIndS 𝑀 → ∀𝑠 ∈ 𝑆 ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))) | ||
| Theorem | isldepslvec2 48458* | Alternative definition of being a linearly dependent subset of a (left) vector space. In this case, the reverse implication of islindeps2 48456 holds, so that both definitions are equivalent (see theorem 1.6 in [Roman] p. 46 and the note in [Roman] p. 112: if a nontrivial linear combination of elements (where not all of the coefficients are 0) in an R-vector space is 0, then and only then each of the elements is a linear combination of the others. (Contributed by AV, 30-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠 ∈ 𝑆 ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ 𝑆 linDepS 𝑀)) | ||
| Theorem | lindssnlvec 48459 | A singleton not containing the zero element of a vector space is always linearly independent. (Contributed by AV, 16-Apr-2019.) (Revised by AV, 28-Apr-2019.) |
| ⊢ ((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) → {𝑆} linIndS 𝑀) | ||
| Theorem | lmod1lem1 48460* | Lemma 1 for lmod1 48465. (Contributed by AV, 28-Apr-2019.) |
| ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠 ‘𝑀)𝐼) ∈ {𝐼}) | ||
| Theorem | lmod1lem2 48461* | Lemma 2 for lmod1 48465. (Contributed by AV, 28-Apr-2019.) |
| ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠 ‘𝑀)(𝐼(+g‘𝑀)𝐼)) = ((𝑟( ·𝑠 ‘𝑀)𝐼)(+g‘𝑀)(𝑟( ·𝑠 ‘𝑀)𝐼))) | ||
| Theorem | lmod1lem3 48462* | Lemma 3 for lmod1 48465. (Contributed by AV, 29-Apr-2019.) |
| ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠 ‘𝑀)𝐼) = ((𝑞( ·𝑠 ‘𝑀)𝐼)(+g‘𝑀)(𝑟( ·𝑠 ‘𝑀)𝐼))) | ||
| Theorem | lmod1lem4 48463* | Lemma 4 for lmod1 48465. (Contributed by AV, 29-Apr-2019.) |
| ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠 ‘𝑀)𝐼) = (𝑞( ·𝑠 ‘𝑀)(𝑟( ·𝑠 ‘𝑀)𝐼))) | ||
| Theorem | lmod1lem5 48464* | Lemma 5 for lmod1 48465. (Contributed by AV, 28-Apr-2019.) |
| ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((1r‘(Scalar‘𝑀))( ·𝑠 ‘𝑀)𝐼) = 𝐼) | ||
| Theorem | lmod1 48465* | The (smallest) structure representing a zero module over an arbitrary ring. (Contributed by AV, 29-Apr-2019.) |
| ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑀 ∈ LMod) | ||
| Theorem | lmod1zr 48466 | The (smallest) structure representing a zero module over a zero ring. (Contributed by AV, 29-Apr-2019.) |
| ⊢ 𝑅 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} & ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑍, 𝐼〉, 𝐼〉}〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑀 ∈ LMod) | ||
| Theorem | lmod1zrnlvec 48467 | There is a (left) module (a zero module) which is not a (left) vector space. (Contributed by AV, 29-Apr-2019.) |
| ⊢ 𝑅 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} & ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑍, 𝐼〉, 𝐼〉}〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑀 ∉ LVec) | ||
| Theorem | lmodn0 48468 | Left modules exist. (Contributed by AV, 29-Apr-2019.) |
| ⊢ LMod ≠ ∅ | ||
| Theorem | zlmodzxzequa 48469 | Example of an equation within the ℤ-module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 0 = {〈0, 0〉, 〈1, 0〉} & ⊢ ∙ = ( ·𝑠 ‘𝑍) & ⊢ − = (-g‘𝑍) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = 0 | ||
| Theorem | zlmodzxznm 48470 | Example of a linearly dependent set whose elements are not linear combinations of the others, see note in [Roman] p. 112). (Contributed by AV, 23-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 0 = {〈0, 0〉, 〈1, 0〉} & ⊢ ∙ = ( ·𝑠 ‘𝑍) & ⊢ − = (-g‘𝑍) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ ∀𝑖 ∈ ℤ ((𝑖 ∙ 𝐴) ≠ 𝐵 ∧ (𝑖 ∙ 𝐵) ≠ 𝐴) | ||
| Theorem | zlmodzxzldeplem 48471 | A and B are not equal. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ 𝐴 ≠ 𝐵 | ||
| Theorem | zlmodzxzequap 48472 | Example of an equation within the ℤ-module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set), written as a sum. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} & ⊢ 0 = {〈0, 0〉, 〈1, 0〉} & ⊢ + = (+g‘𝑍) & ⊢ ∙ = ( ·𝑠 ‘𝑍) ⇒ ⊢ ((2 ∙ 𝐴) + (-3 ∙ 𝐵)) = 0 | ||
| Theorem | zlmodzxzldeplem1 48473 | Lemma 1 for zlmodzxzldep 48477. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} & ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} ⇒ ⊢ 𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}) | ||
| Theorem | zlmodzxzldeplem2 48474 | Lemma 2 for zlmodzxzldep 48477. (Contributed by AV, 24-May-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} & ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} ⇒ ⊢ 𝐹 finSupp 0 | ||
| Theorem | zlmodzxzldeplem3 48475 | Lemma 3 for zlmodzxzldep 48477. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} & ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} ⇒ ⊢ (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (0g‘𝑍) | ||
| Theorem | zlmodzxzldeplem4 48476* | Lemma 4 for zlmodzxzldep 48477. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} & ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} ⇒ ⊢ ∃𝑦 ∈ {𝐴, 𝐵} (𝐹‘𝑦) ≠ 0 | ||
| Theorem | zlmodzxzldep 48477 | { A , B } is a linearly dependent set within the ℤ-module ℤ × ℤ (see example in [Roman] p. 112). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ {𝐴, 𝐵} linDepS 𝑍 | ||
| Theorem | ldepsnlinclem1 48478 | Lemma 1 for ldepsnlinc 48481. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴) | ||
| Theorem | ldepsnlinclem2 48479 | Lemma 2 for ldepsnlinc 48481. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐴}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵) | ||
| Theorem | lvecpsslmod 48480 | The class of all (left) vector spaces is a proper subclass of the class of all (left) modules. Although it is obvious (and proven by lveclmod 21028) that every left vector space is a left module, there is (at least) one left module which is no left vector space, for example the zero module over the zero ring, see lmod1zrnlvec 48467. (Contributed by AV, 29-Apr-2019.) |
| ⊢ LVec ⊊ LMod | ||
| Theorem | ldepsnlinc 48481* | The reverse implication of islindeps2 48456 does not hold for arbitrary (left) modules, see note in [Roman] p. 112: "... if a nontrivial linear combination of the elements ... in an R-module M is 0, ... where not all of the coefficients are 0, then we cannot conclude ... that one of the elements ... is a linear combination of the others." This means that there is at least one left module having a linearly dependent subset in which there is at least one element which is not a linear combination of the other elements of this subset. Such a left module can be constructed by using zlmodzxzequa 48469 and zlmodzxznm 48470. (Contributed by AV, 25-May-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ ∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣 ∈ 𝑠 ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)) | ||
| Theorem | ldepslinc 48482* | For (left) vector spaces, isldepslvec2 48458 provides an alternative definition of being a linearly dependent subset, whereas ldepsnlinc 48481 indicates that there is not an analogous alternative definition for arbitrary (left) modules. (Contributed by AV, 25-May-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ (∀𝑚 ∈ LVec ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣 ∈ 𝑠 ∃𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∧ ¬ ∀𝑚 ∈ LMod ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣 ∈ 𝑠 ∃𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))) | ||
| Theorem | suppdm 48483 | If the range of a function does not contain the zero, the support of the function equals its domain. (Contributed by AV, 20-May-2020.) |
| ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = dom 𝐹) | ||
| Theorem | eluz2cnn0n1 48484 | An integer greater than 1 is a complex number not equal to 0 or 1. (Contributed by AV, 23-May-2020.) |
| ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ (ℂ ∖ {0, 1})) | ||
| Theorem | divge1b 48485 | The ratio of a real number to a positive real number is greater than or equal to 1 iff the divisor (the positive real number) is less than or equal to the dividend (the real number). (Contributed by AV, 26-May-2020.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ 1 ≤ (𝐵 / 𝐴))) | ||
| Theorem | divgt1b 48486 | The ratio of a real number to a positive real number is greater than 1 iff the divisor (the positive real number) is less than the dividend (the real number). (Contributed by AV, 30-May-2020.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 1 < (𝐵 / 𝐴))) | ||
| Theorem | ltsubaddb 48487 | Equivalence for the "less than" relation between differences and sums. (Contributed by AV, 6-Jun-2020.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 − 𝐶) < (𝐵 − 𝐷) ↔ (𝐴 + 𝐷) < (𝐵 + 𝐶))) | ||
| Theorem | ltsubsubb 48488 | Equivalence for the "less than" relation between differences. (Contributed by AV, 6-Jun-2020.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 − 𝐶) < (𝐵 − 𝐷) ↔ (𝐴 − 𝐵) < (𝐶 − 𝐷))) | ||
| Theorem | ltsubadd2b 48489 | Equivalence for the "less than" relation between differences and sums. (Contributed by AV, 6-Jun-2020.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐷 − 𝐶) < (𝐵 − 𝐴) ↔ (𝐴 + 𝐷) < (𝐵 + 𝐶))) | ||
| Theorem | divsub1dir 48490 | Distribution of division over subtraction by 1. (Contributed by AV, 6-Jun-2020.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ((𝐴 / 𝐵) − 1) = ((𝐴 − 𝐵) / 𝐵)) | ||
| Theorem | expnegico01 48491 | An integer greater than 1 to the power of a negative integer is in the closed-below, open-above interval between 0 and 1. (Contributed by AV, 24-May-2020.) |
| ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ ∧ 𝑁 < 0) → (𝐵↑𝑁) ∈ (0[,)1)) | ||
| Theorem | elfzolborelfzop1 48492 | An element of a half-open integer interval is either equal to the left bound of the interval or an element of a half-open integer interval with a lower bound increased by 1. (Contributed by AV, 2-Jun-2020.) |
| ⊢ (𝐾 ∈ (𝑀..^𝑁) → (𝐾 = 𝑀 ∨ 𝐾 ∈ ((𝑀 + 1)..^𝑁))) | ||
| Theorem | pw2m1lepw2m1 48493 | 2 to the power of a positive integer decreased by 1 is less than or equal to 2 to the power of the integer minus 1. (Contributed by AV, 30-May-2020.) |
| ⊢ (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1)) | ||
| Theorem | zgtp1leeq 48494 | If an integer is between another integer and its predecessor, the integer is equal to the other integer. (Contributed by AV, 7-Jun-2020.) |
| ⊢ ((𝐼 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((𝐴 − 1) < 𝐼 ∧ 𝐼 ≤ 𝐴) → 𝐼 = 𝐴)) | ||
| Theorem | flsubz 48495 | An integer can be moved in and out of the floor of a difference. (Contributed by AV, 29-May-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) → (⌊‘(𝐴 − 𝑁)) = ((⌊‘𝐴) − 𝑁)) | ||
| Theorem | nn0onn0ex 48496* | For each odd nonnegative integer there is a nonnegative integer which, multiplied by 2 and increased by 1, results in the odd nonnegative integer. (Contributed by AV, 30-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1)) | ||
| Theorem | nn0enn0ex 48497* | For each even nonnegative integer there is a nonnegative integer which, multiplied by 2, results in the even nonnegative integer. (Contributed by AV, 30-May-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ (𝑁 / 2) ∈ ℕ0) → ∃𝑚 ∈ ℕ0 𝑁 = (2 · 𝑚)) | ||
| Theorem | nnennex 48498* | For each even positive integer there is a positive integer which, multiplied by 2, results in the even positive integer. (Contributed by AV, 5-Jun-2023.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ) → ∃𝑚 ∈ ℕ 𝑁 = (2 · 𝑚)) | ||
| Theorem | nneop 48499 | A positive integer is even or odd. (Contributed by AV, 30-May-2020.) |
| ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ)) | ||
| Theorem | nneom 48500 | A positive integer is even or odd. (Contributed by AV, 30-May-2020.) |
| ⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 − 1) / 2) ∈ ℕ0)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |