| Metamath
Proof Explorer Theorem List (p. 485 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | lcoval 48401* | The value of a linear combination. (Contributed by AV, 5-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) ⇒ ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ (𝐶 ∈ 𝐵 ∧ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉))))) | ||
| Theorem | lincfsuppcl 48402 | A linear combination of vectors (with finite support) is a vector. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ 𝑊 ∧ 𝑉 ⊆ 𝐵) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝐵) | ||
| Theorem | linccl 48403 | A linear combination of vectors is a vector. (Contributed by AV, 31-Mar-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Base‘(Scalar‘𝑀)) ⇒ ⊢ ((𝑀 ∈ LMod ∧ (𝑉 ∈ Fin ∧ 𝑉 ⊆ 𝐵 ∧ 𝑆 ∈ (𝑅 ↑m 𝑉))) → (𝑆( linC ‘𝑀)𝑉) ∈ 𝐵) | ||
| Theorem | lincval0 48404 | The value of an empty linear combination. (Contributed by AV, 12-Apr-2019.) |
| ⊢ (𝑀 ∈ 𝑋 → (∅( linC ‘𝑀)∅) = (0g‘𝑀)) | ||
| Theorem | lincvalsng 48405 | The linear combination over a singleton. (Contributed by AV, 25-May-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → ({〈𝑉, 𝑌〉} ( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉)) | ||
| Theorem | lincvalsn 48406 | The linear combination over a singleton. (Contributed by AV, 12-Apr-2019.) (Proof shortened by AV, 25-May-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝐹 = {〈𝑉, 𝑌〉} ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅) → (𝐹( linC ‘𝑀){𝑉}) = (𝑌 · 𝑉)) | ||
| Theorem | lincvalpr 48407 | The linear combination over an unordered pair. (Contributed by AV, 16-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝐹 = {〈𝑉, 𝑋〉, 〈𝑊, 𝑌〉} ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ≠ 𝑊) ∧ (𝑉 ∈ 𝐵 ∧ 𝑋 ∈ 𝑅) ∧ (𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝑅)) → (𝐹( linC ‘𝑀){𝑉, 𝑊}) = ((𝑋 · 𝑉) + (𝑌 · 𝑊))) | ||
| Theorem | lincval1 48408 | The linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐹 = {〈𝑉, (0g‘𝑆)〉} ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (𝐹( linC ‘𝑀){𝑉}) = (0g‘𝑀)) | ||
| Theorem | lcosn0 48409 | Properties of a linear combination over a singleton mapping to 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ 𝐹 = {〈𝑉, (0g‘𝑆)〉} ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝐵) → (𝐹 ∈ (𝑅 ↑m {𝑉}) ∧ 𝐹 finSupp (0g‘𝑆) ∧ (𝐹( linC ‘𝑀){𝑉}) = (0g‘𝑀))) | ||
| Theorem | lincvalsc0 48410* | The linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ 0 ) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍) | ||
| Theorem | lcoc0 48411* | Properties of a linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ 0 ) & ⊢ 𝑅 = (Base‘𝑆) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍)) | ||
| Theorem | linc0scn0 48412* | If a set contains the zero element of a module, there is a linear combination being 0 where not all scalars are 0. (Contributed by AV, 13-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ 1 = (1r‘𝑆) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑍, 1 , 0 )) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍) | ||
| Theorem | lincdifsn 48413 | A vector is a linear combination of a set containing this vector. (Contributed by AV, 21-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) ∧ (𝐹 ∈ (𝑆 ↑m 𝑉) ∧ 𝐹 finSupp 0 ) ∧ 𝐺 = (𝐹 ↾ (𝑉 ∖ {𝑋}))) → (𝐹( linC ‘𝑀)𝑉) = ((𝐺( linC ‘𝑀)(𝑉 ∖ {𝑋})) + ((𝐹‘𝑋) · 𝑋))) | ||
| Theorem | linc1 48414* | A vector is a linear combination of a set containing this vector. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 0 = (0g‘𝑆) & ⊢ 1 = (1r‘𝑆) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ if(𝑥 = 𝑋, 1 , 0 )) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹( linC ‘𝑀)𝑉) = 𝑋) | ||
| Theorem | lincellss 48415 | A linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → ((𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝐹 finSupp (0g‘(Scalar‘𝑀))) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝑆)) | ||
| Theorem | lco0 48416 | The set of empty linear combinations over a monoid is the singleton with the identity element of the monoid. (Contributed by AV, 12-Apr-2019.) |
| ⊢ (𝑀 ∈ Mnd → (𝑀 LinCo ∅) = {(0g‘𝑀)}) | ||
| Theorem | lcoel0 48417 | The zero vector is always a linear combination. (Contributed by AV, 12-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (0g‘𝑀) ∈ (𝑀 LinCo 𝑉)) | ||
| Theorem | lincsum 48418 | The sum of two linear combinations is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 4-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| ⊢ + = (+g‘𝑀) & ⊢ 𝑋 = (𝐴( linC ‘𝑀)𝑉) & ⊢ 𝑌 = (𝐵( linC ‘𝑀)𝑉) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑅 = (Base‘𝑆) & ⊢ ✚ = (+g‘𝑆) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝐵 ∈ (𝑅 ↑m 𝑉)) ∧ (𝐴 finSupp (0g‘𝑆) ∧ 𝐵 finSupp (0g‘𝑆))) → (𝑋 + 𝑌) = ((𝐴 ∘f ✚ 𝐵)( linC ‘𝑀)𝑉)) | ||
| Theorem | lincscm 48419* | A linear combinations multiplied with a scalar is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 9-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| ⊢ ∙ = ( ·𝑠 ‘𝑀) & ⊢ · = (.r‘(Scalar‘𝑀)) & ⊢ 𝑋 = (𝐴( linC ‘𝑀)𝑉) & ⊢ 𝑅 = (Base‘(Scalar‘𝑀)) & ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ (𝑆 · (𝐴‘𝑥))) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐴 ∈ (𝑅 ↑m 𝑉) ∧ 𝑆 ∈ 𝑅) ∧ 𝐴 finSupp (0g‘(Scalar‘𝑀))) → (𝑆 ∙ 𝑋) = (𝐹( linC ‘𝑀)𝑉)) | ||
| Theorem | lincsumcl 48420 | The sum of two linear combinations is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 4-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.) |
| ⊢ + = (+g‘𝑀) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐶 ∈ (𝑀 LinCo 𝑉) ∧ 𝐷 ∈ (𝑀 LinCo 𝑉))) → (𝐶 + 𝐷) ∈ (𝑀 LinCo 𝑉)) | ||
| Theorem | lincscmcl 48421 | The multiplication of a linear combination with a scalar is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 11-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.) |
| ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝑅 = (Base‘(Scalar‘𝑀)) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶 ∈ 𝑅 ∧ 𝐷 ∈ (𝑀 LinCo 𝑉)) → (𝐶 · 𝐷) ∈ (𝑀 LinCo 𝑉)) | ||
| Theorem | lincsumscmcl 48422 | The sum of a linear combination and a multiplication of a linear combination with a scalar is a linear combination. (Contributed by AV, 11-Apr-2019.) |
| ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝑅 = (Base‘(Scalar‘𝑀)) & ⊢ + = (+g‘𝑀) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝐶 ∈ 𝑅 ∧ 𝐷 ∈ (𝑀 LinCo 𝑉) ∧ 𝐵 ∈ (𝑀 LinCo 𝑉))) → ((𝐶 · 𝐷) + 𝐵) ∈ (𝑀 LinCo 𝑉)) | ||
| Theorem | lincolss 48423 | According to the statement in [Lang] p. 129, the set (LSubSp‘𝑀) of all linear combinations of a set of vectors V is a submodule (generated by V) of the module M. The elements of V are called generators of (LSubSp‘𝑀). (Contributed by AV, 12-Apr-2019.) |
| ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo 𝑉) ∈ (LSubSp‘𝑀)) | ||
| Theorem | ellcoellss 48424* | Every linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑆) → ∀𝑥 ∈ (𝑀 LinCo 𝑉)𝑥 ∈ 𝑆) | ||
| Theorem | lcoss 48425 | A set of vectors of a module is a subset of the set of all linear combinations of the set. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ⊆ (𝑀 LinCo 𝑉)) | ||
| Theorem | lspsslco 48426 | Lemma for lspeqlco 48428. (Contributed by AV, 17-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ((LSpan‘𝑀)‘𝑉) ⊆ (𝑀 LinCo 𝑉)) | ||
| Theorem | lcosslsp 48427 | Lemma for lspeqlco 48428. (Contributed by AV, 20-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) ⊆ ((LSpan‘𝑀)‘𝑉)) | ||
| Theorem | lspeqlco 48428 | Equivalence of a span of a set of vectors of a left module defined as the intersection of all linear subspaces which each contain every vector in that set (see df-lsp 20878) and as the set of all linear combinations of the vectors of the set with finite support. (Contributed by AV, 20-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) = ((LSpan‘𝑀)‘𝑉)) | ||
According to the definition in [Lang] p. 129: "A subset S of a module M is said
to be linearly independent (over [the ring] A) if whenever we have a
linear combination ∑x ∈S axx which is equal to
0, then ax=0 for all x∈S." This definition does not care for
the finiteness of the set S (because the definition of a linear combination
in [Lang] p.129 does already assure that only a finite number of coefficients
can be 0 in the sum). Our definition df-lininds 48431 does also neither claim that
the subset must be finite, nor that almost all coefficients within the linear
combination are 0. If this is required, it must be explicitly stated as
precondition in the corresponding theorems. | ||
| Syntax | clininds 48429 | Extend class notation with the relation between a module and its linearly independent subsets. |
| class linIndS | ||
| Syntax | clindeps 48430 | Extend class notation with the relation between a module and its linearly dependent subsets. |
| class linDepS | ||
| Definition | df-lininds 48431* | Define the relation between a module and its linearly independent subsets. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 24-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ linIndS = {〈𝑠, 𝑚〉 ∣ (𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g‘𝑚)) → ∀𝑥 ∈ 𝑠 (𝑓‘𝑥) = (0g‘(Scalar‘𝑚))))} | ||
| Theorem | rellininds 48432 | The class defining the relation between a module and its linearly independent subsets is a relation. (Contributed by AV, 13-Apr-2019.) |
| ⊢ Rel linIndS | ||
| Definition | df-lindeps 48433* | Define the relation between a module and its linearly dependent subsets. (Contributed by AV, 26-Apr-2019.) |
| ⊢ linDepS = {〈𝑠, 𝑚〉 ∣ ¬ 𝑠 linIndS 𝑚} | ||
| Theorem | linindsv 48434 | The classes of the module and its linearly independent subsets are sets. (Contributed by AV, 13-Apr-2019.) |
| ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ V ∧ 𝑀 ∈ V)) | ||
| Theorem | islininds 48435* | The property of being a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) | ||
| Theorem | linindsi 48436* | The implications of being a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) | ||
| Theorem | linindslinci 48437* | The implications of being a linearly independent subset and a linear combination of this subset being 0. (Contributed by AV, 24-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑆 linIndS 𝑀 ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍)) → ∀𝑥 ∈ 𝑆 (𝐹‘𝑥) = 0 ) | ||
| Theorem | islinindfis 48438* | The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) | ||
| Theorem | islinindfiss 48439* | The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ Fin ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linIndS 𝑀 ↔ ∀𝑓 ∈ (𝐸 ↑m 𝑆)((𝑓( linC ‘𝑀)𝑆) = 𝑍 → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) | ||
| Theorem | linindscl 48440 | A linearly independent set is a subset of (the base set of) a module. (Contributed by AV, 13-Apr-2019.) |
| ⊢ (𝑆 linIndS 𝑀 → 𝑆 ∈ 𝒫 (Base‘𝑀)) | ||
| Theorem | lindepsnlininds 48441 | A linearly dependent subset is not a linearly independent subset. (Contributed by AV, 26-Apr-2019.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊) → (𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀)) | ||
| Theorem | islindeps 48442* | The property of being a linearly dependent subset. (Contributed by AV, 26-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ 𝑊 ∧ 𝑆 ∈ 𝒫 𝐵) → (𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈ (𝐸 ↑m 𝑆)(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍 ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠ 0 ))) | ||
| Theorem | lincext1 48443* | Property 1 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 29-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋})))) → 𝐹 ∈ (𝐸 ↑m 𝑆)) | ||
| Theorem | lincext2 48444* | Property 2 of an extension of a linear combination. (Contributed by AV, 20-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ 𝐺 finSupp 0 ) → 𝐹 finSupp 0 ) | ||
| Theorem | lincext3 48445* | Property 3 of an extension of a linear combination. (Contributed by AV, 23-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐹 = (𝑧 ∈ 𝑆 ↦ if(𝑧 = 𝑋, (𝑁‘𝑌), (𝐺‘𝑧))) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵) ∧ (𝑌 ∈ 𝐸 ∧ 𝑋 ∈ 𝑆 ∧ 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) ∧ (𝐺 finSupp 0 ∧ (𝑌( ·𝑠 ‘𝑀)𝑋) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})))) → (𝐹( linC ‘𝑀)𝑆) = 𝑍) | ||
| Theorem | lindslinindsimp1 48446* | Implication 1 for lindslininds 48453. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) (Proof shortened by II, 16-Feb-2023.) |
| ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) ⇒ ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))) | ||
| Theorem | lindslinindimp2lem1 48447* | Lemma 1 for lindslinindsimp2 48452. (Contributed by AV, 25-Apr-2019.) |
| ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) & ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝑌 ∈ 𝐵) | ||
| Theorem | lindslinindimp2lem2 48448* | Lemma 2 for lindslinindsimp2 48452. (Contributed by AV, 25-Apr-2019.) |
| ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) & ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑m 𝑆))) → 𝐺 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))) | ||
| Theorem | lindslinindimp2lem3 48449* | Lemma 3 for lindslinindsimp2 48452. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) & ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 )) → 𝐺 finSupp 0 ) | ||
| Theorem | lindslinindimp2lem4 48450* | Lemma 4 for lindslinindsimp2 48452. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) (Proof shortened by II, 16-Feb-2023.) |
| ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) & ⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑m 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠 ‘𝑀)𝑦))) = (𝑌( ·𝑠 ‘𝑀)𝑥)) | ||
| Theorem | lindslinindsimp2lem5 48451* | Lemma 5 for lindslinindsimp2 48452. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) ⇒ ⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠 ‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓‘𝑥) = 0 ))) | ||
| Theorem | lindslinindsimp2 48452* | Implication 2 for lindslininds 48453. (Contributed by AV, 26-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) ⇒ ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → ((𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) | ||
| Theorem | lindslininds 48453 | Equivalence of definitions df-linds 21716 and df-lininds 48431 for (linear) independence for (left) modules. (Contributed by AV, 26-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → (𝑆 linIndS 𝑀 ↔ 𝑆 ∈ (LIndS‘𝑀))) | ||
| Theorem | linds0 48454 | The empty set is always a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ (𝑀 ∈ 𝑉 → ∅ linIndS 𝑀) | ||
| Theorem | el0ldep 48455 | A set containing the zero element of a module is always linearly dependent, if the underlying ring has at least two elements. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀) | ||
| Theorem | el0ldepsnzr 48456 | A set containing the zero element of a module over a nonzero ring is always linearly dependent. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.) |
| ⊢ (((𝑀 ∈ LMod ∧ (Scalar‘𝑀) ∈ NzRing) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀) | ||
| Theorem | lindsrng01 48457 | Any subset of a module is always linearly independent if the underlying ring has at most one element. Since the underlying ring cannot be the empty set (see lmodsn0 20780), this means that the underlying ring has only one element, so it is a zero ring. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ ((♯‘𝐸) = 0 ∨ (♯‘𝐸) = 1) ∧ 𝑆 ∈ 𝒫 𝐵) → 𝑆 linIndS 𝑀) | ||
| Theorem | lindszr 48458 | Any subset of a module over a zero ring is always linearly independent. (Contributed by AV, 27-Apr-2019.) |
| ⊢ ((𝑀 ∈ LMod ∧ ¬ (Scalar‘𝑀) ∈ NzRing ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → 𝑆 linIndS 𝑀) | ||
| Theorem | snlindsntorlem 48459* | Lemma for snlindsntor 48460. (Contributed by AV, 15-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑m {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) → ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) | ||
| Theorem | snlindsntor 48460* | A singleton is linearly independent iff it does not contain a torsion element. According to Wikipedia ("Torsion (algebra)", 15-Apr-2019, https://en.wikipedia.org/wiki/Torsion_(algebra)): "An element m of a module M over a ring R is called a torsion element of the module if there exists a regular element r of the ring (an element that is neither a left nor a right zero divisor) that annihilates m, i.e., (𝑟 · 𝑚) = 0. In an integral domain (a commutative ring without zero divisors), every nonzero element is regular, so a torsion element of a module over an integral domain is one annihilated by a nonzero element of the integral domain." Analogously, the definition in [Lang] p. 147 states that "An element x of [a module] E [over a ring R] is called a torsion element if there exists 𝑎 ∈ 𝑅, 𝑎 ≠ 0, such that 𝑎 · 𝑥 = 0. This definition includes the zero element of the module. Some authors, however, exclude the zero element from the definition of torsion elements. (Contributed by AV, 14-Apr-2019.) (Revised by AV, 27-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑠 ∈ (𝑆 ∖ { 0 })(𝑠 · 𝑋) ≠ 𝑍 ↔ {𝑋} linIndS 𝑀)) | ||
| Theorem | ldepsprlem 48461 | Lemma for ldepspr 48462. (Contributed by AV, 16-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝐴 ∈ 𝑆)) → (𝑋 = (𝐴 · 𝑌) → (( 1 · 𝑋)(+g‘𝑀)((𝑁‘𝐴) · 𝑌)) = 𝑍)) | ||
| Theorem | ldepspr 48462 | If a vector is a scalar multiple of another vector, the (unordered pair containing the) two vectors are linearly dependent. (Contributed by AV, 16-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝑆 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌)) → ((𝐴 ∈ 𝑆 ∧ 𝑋 = (𝐴 · 𝑌)) → {𝑋, 𝑌} linDepS 𝑀)) | ||
| Theorem | lincresunit3lem3 48463 | Lemma 3 for lincresunit3 48470. (Contributed by AV, 18-May-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑀) ⇒ ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐴 ∈ 𝑈) → (((𝑁‘𝐴) · 𝑋) = ((𝑁‘𝐴) · 𝑌) ↔ 𝑋 = 𝑌)) | ||
| Theorem | lincresunitlem1 48464 | Lemma 1 for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → (𝐼‘(𝑁‘(𝐹‘𝑋))) ∈ 𝐸) | ||
| Theorem | lincresunitlem2 48465 | Lemma for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ ((((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) ∧ 𝑌 ∈ 𝑆) → ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑌)) ∈ 𝐸) | ||
| Theorem | lincresunit1 48466* | Property 1 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈)) → 𝐺 ∈ (𝐸 ↑m (𝑆 ∖ {𝑋}))) | ||
| Theorem | lincresunit2 48467* | Property 2 of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → 𝐺 finSupp 0 ) | ||
| Theorem | lincresunit3lem1 48468* | Lemma 1 for lincresunit3 48470. (Contributed by AV, 17-May-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝑧 ∈ (𝑆 ∖ {𝑋}))) → ((𝑁‘(𝐹‘𝑋))( ·𝑠 ‘𝑀)((𝐺‘𝑧)( ·𝑠 ‘𝑀)𝑧)) = ((𝐹‘𝑧)( ·𝑠 ‘𝑀)𝑧)) | ||
| Theorem | lincresunit3lem2 48469* | Lemma 2 for lincresunit3 48470. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 )) → ((𝑁‘(𝐹‘𝑋))( ·𝑠 ‘𝑀)(𝑀 Σg (𝑧 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐺‘𝑧)( ·𝑠 ‘𝑀)𝑧)))) = ((𝐹 ↾ (𝑆 ∖ {𝑋}))( linC ‘𝑀)(𝑆 ∖ {𝑋}))) | ||
| Theorem | lincresunit3 48470* | Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LMod ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ∈ 𝑈 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋) | ||
| Theorem | lincreslvec3 48471* | Property 3 of a specially modified restriction of a linear combination in a vector space. (Contributed by AV, 18-May-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑁 = (invg‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = (𝑠 ∈ (𝑆 ∖ {𝑋}) ↦ ((𝐼‘(𝑁‘(𝐹‘𝑋))) · (𝐹‘𝑠))) ⇒ ⊢ (((𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ LVec ∧ 𝑋 ∈ 𝑆) ∧ (𝐹 ∈ (𝐸 ↑m 𝑆) ∧ (𝐹‘𝑋) ≠ 0 ∧ 𝐹 finSupp 0 ) ∧ (𝐹( linC ‘𝑀)𝑆) = 𝑍) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑋})) = 𝑋) | ||
| Theorem | islindeps2 48472* | Conditions for being a linearly dependent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (∃𝑠 ∈ 𝑆 ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) → 𝑆 linDepS 𝑀)) | ||
| Theorem | islininds2 48473* | Implication of being a linearly independent subset of a (left) module over a nonzero ring. (Contributed by AV, 29-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 𝐵 ∧ 𝑅 ∈ NzRing) → (𝑆 linIndS 𝑀 → ∀𝑠 ∈ 𝑆 ∀𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑓 finSupp 0 ∨ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) ≠ 𝑠))) | ||
| Theorem | isldepslvec2 48474* | Alternative definition of being a linearly dependent subset of a (left) vector space. In this case, the reverse implication of islindeps2 48472 holds, so that both definitions are equivalent (see theorem 1.6 in [Roman] p. 46 and the note in [Roman] p. 112: if a nontrivial linear combination of elements (where not all of the coefficients are 0) in an R-vector space is 0, then and only then each of the elements is a linear combination of the others. (Contributed by AV, 30-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (0g‘𝑀) & ⊢ 𝑅 = (Scalar‘𝑀) & ⊢ 𝐸 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑀 ∈ LVec ∧ 𝑆 ∈ 𝒫 𝐵) → (∃𝑠 ∈ 𝑆 ∃𝑓 ∈ (𝐸 ↑m (𝑆 ∖ {𝑠}))(𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)(𝑆 ∖ {𝑠})) = 𝑠) ↔ 𝑆 linDepS 𝑀)) | ||
| Theorem | lindssnlvec 48475 | A singleton not containing the zero element of a vector space is always linearly independent. (Contributed by AV, 16-Apr-2019.) (Revised by AV, 28-Apr-2019.) |
| ⊢ ((𝑀 ∈ LVec ∧ 𝑆 ∈ (Base‘𝑀) ∧ 𝑆 ≠ (0g‘𝑀)) → {𝑆} linIndS 𝑀) | ||
| Theorem | lmod1lem1 48476* | Lemma 1 for lmod1 48481. (Contributed by AV, 28-Apr-2019.) |
| ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠 ‘𝑀)𝐼) ∈ {𝐼}) | ||
| Theorem | lmod1lem2 48477* | Lemma 2 for lmod1 48481. (Contributed by AV, 28-Apr-2019.) |
| ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠 ‘𝑀)(𝐼(+g‘𝑀)𝐼)) = ((𝑟( ·𝑠 ‘𝑀)𝐼)(+g‘𝑀)(𝑟( ·𝑠 ‘𝑀)𝐼))) | ||
| Theorem | lmod1lem3 48478* | Lemma 3 for lmod1 48481. (Contributed by AV, 29-Apr-2019.) |
| ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠 ‘𝑀)𝐼) = ((𝑞( ·𝑠 ‘𝑀)𝐼)(+g‘𝑀)(𝑟( ·𝑠 ‘𝑀)𝐼))) | ||
| Theorem | lmod1lem4 48479* | Lemma 4 for lmod1 48481. (Contributed by AV, 29-Apr-2019.) |
| ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠 ‘𝑀)𝐼) = (𝑞( ·𝑠 ‘𝑀)(𝑟( ·𝑠 ‘𝑀)𝐼))) | ||
| Theorem | lmod1lem5 48480* | Lemma 5 for lmod1 48481. (Contributed by AV, 28-Apr-2019.) |
| ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((1r‘(Scalar‘𝑀))( ·𝑠 ‘𝑀)𝐼) = 𝐼) | ||
| Theorem | lmod1 48481* | The (smallest) structure representing a zero module over an arbitrary ring. (Contributed by AV, 29-Apr-2019.) |
| ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑀 ∈ LMod) | ||
| Theorem | lmod1zr 48482 | The (smallest) structure representing a zero module over a zero ring. (Contributed by AV, 29-Apr-2019.) |
| ⊢ 𝑅 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} & ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑍, 𝐼〉, 𝐼〉}〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑀 ∈ LMod) | ||
| Theorem | lmod1zrnlvec 48483 | There is a (left) module (a zero module) which is not a (left) vector space. (Contributed by AV, 29-Apr-2019.) |
| ⊢ 𝑅 = {〈(Base‘ndx), {𝑍}〉, 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉, 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉} & ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), {〈〈𝑍, 𝐼〉, 𝐼〉}〉}) ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → 𝑀 ∉ LVec) | ||
| Theorem | lmodn0 48484 | Left modules exist. (Contributed by AV, 29-Apr-2019.) |
| ⊢ LMod ≠ ∅ | ||
| Theorem | zlmodzxzequa 48485 | Example of an equation within the ℤ-module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 0 = {〈0, 0〉, 〈1, 0〉} & ⊢ ∙ = ( ·𝑠 ‘𝑍) & ⊢ − = (-g‘𝑍) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = 0 | ||
| Theorem | zlmodzxznm 48486 | Example of a linearly dependent set whose elements are not linear combinations of the others, see note in [Roman] p. 112). (Contributed by AV, 23-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 0 = {〈0, 0〉, 〈1, 0〉} & ⊢ ∙ = ( ·𝑠 ‘𝑍) & ⊢ − = (-g‘𝑍) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ ∀𝑖 ∈ ℤ ((𝑖 ∙ 𝐴) ≠ 𝐵 ∧ (𝑖 ∙ 𝐵) ≠ 𝐴) | ||
| Theorem | zlmodzxzldeplem 48487 | A and B are not equal. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ 𝐴 ≠ 𝐵 | ||
| Theorem | zlmodzxzequap 48488 | Example of an equation within the ℤ-module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set), written as a sum. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} & ⊢ 0 = {〈0, 0〉, 〈1, 0〉} & ⊢ + = (+g‘𝑍) & ⊢ ∙ = ( ·𝑠 ‘𝑍) ⇒ ⊢ ((2 ∙ 𝐴) + (-3 ∙ 𝐵)) = 0 | ||
| Theorem | zlmodzxzldeplem1 48489 | Lemma 1 for zlmodzxzldep 48493. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} & ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} ⇒ ⊢ 𝐹 ∈ (ℤ ↑m {𝐴, 𝐵}) | ||
| Theorem | zlmodzxzldeplem2 48490 | Lemma 2 for zlmodzxzldep 48493. (Contributed by AV, 24-May-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} & ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} ⇒ ⊢ 𝐹 finSupp 0 | ||
| Theorem | zlmodzxzldeplem3 48491 | Lemma 3 for zlmodzxzldep 48493. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} & ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} ⇒ ⊢ (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (0g‘𝑍) | ||
| Theorem | zlmodzxzldeplem4 48492* | Lemma 4 for zlmodzxzldep 48493. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} & ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} ⇒ ⊢ ∃𝑦 ∈ {𝐴, 𝐵} (𝐹‘𝑦) ≠ 0 | ||
| Theorem | zlmodzxzldep 48493 | { A , B } is a linearly dependent set within the ℤ-module ℤ × ℤ (see example in [Roman] p. 112). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ {𝐴, 𝐵} linDepS 𝑍 | ||
| Theorem | ldepsnlinclem1 48494 | Lemma 1 for ldepsnlinc 48497. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐵}) → (𝐹( linC ‘𝑍){𝐵}) ≠ 𝐴) | ||
| Theorem | ldepsnlinclem2 48495 | Lemma 2 for ldepsnlinc 48497. (Contributed by AV, 25-May-2019.) (Revised by AV, 10-Jun-2019.) |
| ⊢ 𝑍 = (ℤring freeLMod {0, 1}) & ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} & ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} ⇒ ⊢ (𝐹 ∈ ((Base‘ℤring) ↑m {𝐴}) → (𝐹( linC ‘𝑍){𝐴}) ≠ 𝐵) | ||
| Theorem | lvecpsslmod 48496 | The class of all (left) vector spaces is a proper subclass of the class of all (left) modules. Although it is obvious (and proven by lveclmod 21013) that every left vector space is a left module, there is (at least) one left module which is no left vector space, for example the zero module over the zero ring, see lmod1zrnlvec 48483. (Contributed by AV, 29-Apr-2019.) |
| ⊢ LVec ⊊ LMod | ||
| Theorem | ldepsnlinc 48497* | The reverse implication of islindeps2 48472 does not hold for arbitrary (left) modules, see note in [Roman] p. 112: "... if a nontrivial linear combination of the elements ... in an R-module M is 0, ... where not all of the coefficients are 0, then we cannot conclude ... that one of the elements ... is a linear combination of the others." This means that there is at least one left module having a linearly dependent subset in which there is at least one element which is not a linear combination of the other elements of this subset. Such a left module can be constructed by using zlmodzxzequa 48485 and zlmodzxznm 48486. (Contributed by AV, 25-May-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ ∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣 ∈ 𝑠 ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)) | ||
| Theorem | ldepslinc 48498* | For (left) vector spaces, isldepslvec2 48474 provides an alternative definition of being a linearly dependent subset, whereas ldepsnlinc 48497 indicates that there is not an analogous alternative definition for arbitrary (left) modules. (Contributed by AV, 25-May-2019.) (Revised by AV, 30-Jul-2019.) |
| ⊢ (∀𝑚 ∈ LVec ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣 ∈ 𝑠 ∃𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∧ ¬ ∀𝑚 ∈ LMod ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣 ∈ 𝑠 ∃𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))) | ||
| Theorem | suppdm 48499 | If the range of a function does not contain the zero, the support of the function equals its domain. (Contributed by AV, 20-May-2020.) |
| ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝑍 ∉ ran 𝐹) → (𝐹 supp 𝑍) = dom 𝐹) | ||
| Theorem | eluz2cnn0n1 48500 | An integer greater than 1 is a complex number not equal to 0 or 1. (Contributed by AV, 23-May-2020.) |
| ⊢ (𝐵 ∈ (ℤ≥‘2) → 𝐵 ∈ (ℂ ∖ {0, 1})) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |