Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0flhalflem2 Structured version   Visualization version   GIF version

Theorem dignn0flhalflem2 44666
Description: Lemma 2 for dignn0flhalf 44668. (Contributed by AV, 7-Jun-2012.)
Assertion
Ref Expression
dignn0flhalflem2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))))

Proof of Theorem dignn0flhalflem2
StepHypRef Expression
1 zre 11977 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
21rehalfcld 11876 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 / 2) ∈ ℝ)
32flcld 13160 . . . . . . 7 (𝐴 ∈ ℤ → (⌊‘(𝐴 / 2)) ∈ ℤ)
43zred 12079 . . . . . 6 (𝐴 ∈ ℤ → (⌊‘(𝐴 / 2)) ∈ ℝ)
543ad2ant1 1128 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ∈ ℝ)
6 2re 11703 . . . . . . . 8 2 ∈ ℝ
76a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
8 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
97, 8reexpcld 13519 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℝ)
1093ad2ant3 1130 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℝ)
11 2cnd 11707 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℂ)
12 2ne0 11733 . . . . . . 7 2 ≠ 0
1312a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 2 ≠ 0)
14 nn0z 11997 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
15143ad2ant3 1130 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
1611, 13, 15expne0d 13508 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ≠ 0)
175, 10, 16redivcld 11460 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / 2)) / (2↑𝑁)) ∈ ℝ)
1817flcld 13160 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ)
1913ad2ant1 1128 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℝ)
206a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℝ)
21 simp3 1133 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
22 1nn0 11905 . . . . . . . 8 1 ∈ ℕ0
2322a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℕ0)
2421, 23nn0addcld 11951 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0)
2520, 24reexpcld 13519 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) ∈ ℝ)
2615peano2zd 12082 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℤ)
2711, 13, 26expne0d 13508 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) ≠ 0)
2819, 25, 27redivcld 11460 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (2↑(𝑁 + 1))) ∈ ℝ)
2928flcld 13160 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) ∈ ℤ)
30 nn0p1nn 11928 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
31 dignn0flhalflem1 44665 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ (𝑁 + 1) ∈ ℕ) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) < (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1)))))
3230, 31syl3an3 1160 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) < (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1)))))
33 1zzd 12005 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℤ)
34 flsubz 44567 . . . . . 6 (((𝐴 / (2↑(𝑁 + 1))) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) = ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1))
3528, 33, 34syl2anc 586 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) = ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1))
3635eqcomd 2825 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) = (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)))
37 nnz 11996 . . . . . . . . . 10 (((𝐴 − 1) / 2) ∈ ℕ → ((𝐴 − 1) / 2) ∈ ℤ)
38 zob 15700 . . . . . . . . . 10 (𝐴 ∈ ℤ → (((𝐴 + 1) / 2) ∈ ℤ ↔ ((𝐴 − 1) / 2) ∈ ℤ))
3937, 38syl5ibr 248 . . . . . . . . 9 (𝐴 ∈ ℤ → (((𝐴 − 1) / 2) ∈ ℕ → ((𝐴 + 1) / 2) ∈ ℤ))
4039imp 409 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ) → ((𝐴 + 1) / 2) ∈ ℤ)
41 zofldiv2 44581 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 + 1) / 2) ∈ ℤ) → (⌊‘(𝐴 / 2)) = ((𝐴 − 1) / 2))
4240, 41syldan 593 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ) → (⌊‘(𝐴 / 2)) = ((𝐴 − 1) / 2))
43423adant3 1127 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / 2)) = ((𝐴 − 1) / 2))
4443fvoveq1d 7170 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(((𝐴 − 1) / 2) / (2↑𝑁))))
45 zcn 11978 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
46 1cnd 10628 . . . . . . . . 9 (𝐴 ∈ ℤ → 1 ∈ ℂ)
4745, 46subcld 10989 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℂ)
48 2rp 12386 . . . . . . . . . 10 2 ∈ ℝ+
4948a1i 11 . . . . . . . . 9 (((𝐴 − 1) / 2) ∈ ℕ → 2 ∈ ℝ+)
5049rpcnne0d 12432 . . . . . . . 8 (((𝐴 − 1) / 2) ∈ ℕ → (2 ∈ ℂ ∧ 2 ≠ 0))
5148a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 2 ∈ ℝ+)
5251, 14rpexpcld 13600 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℝ+)
5352rpcnne0d 12432 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0))
54 divdiv1 11343 . . . . . . . 8 (((𝐴 − 1) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0)) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2 · (2↑𝑁))))
5547, 50, 53, 54syl3an 1155 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2 · (2↑𝑁))))
5610recnd 10661 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
5711, 56mulcomd 10654 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑁)) = ((2↑𝑁) · 2))
5811, 21expp1d 13503 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
5957, 58eqtr4d 2857 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑁)) = (2↑(𝑁 + 1)))
6059oveq2d 7164 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 − 1) / (2 · (2↑𝑁))) = ((𝐴 − 1) / (2↑(𝑁 + 1))))
6155, 60eqtrd 2854 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2↑(𝑁 + 1))))
6261fveq2d 6667 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(((𝐴 − 1) / 2) / (2↑𝑁))) = (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1)))))
6344, 62eqtrd 2854 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1)))))
6432, 36, 633brtr4d 5089 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) < (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))))
6519rehalfcld 11876 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / 2) ∈ ℝ)
6665, 10, 16redivcld 11460 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 2) / (2↑𝑁)) ∈ ℝ)
67 reflcl 13158 . . . . . . 7 ((𝐴 / 2) ∈ ℝ → (⌊‘(𝐴 / 2)) ∈ ℝ)
6865, 67syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ∈ ℝ)
6948a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℝ+)
7069, 15rpexpcld 13600 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℝ+)
71 flle 13161 . . . . . . 7 ((𝐴 / 2) ∈ ℝ → (⌊‘(𝐴 / 2)) ≤ (𝐴 / 2))
7265, 71syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ≤ (𝐴 / 2))
7368, 65, 70, 72lediv1dd 12481 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / 2)) / (2↑𝑁)) ≤ ((𝐴 / 2) / (2↑𝑁)))
74 flwordi 13174 . . . . 5 ((((⌊‘(𝐴 / 2)) / (2↑𝑁)) ∈ ℝ ∧ ((𝐴 / 2) / (2↑𝑁)) ∈ ℝ ∧ ((⌊‘(𝐴 / 2)) / (2↑𝑁)) ≤ ((𝐴 / 2) / (2↑𝑁))) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘((𝐴 / 2) / (2↑𝑁))))
7517, 66, 73, 74syl3anc 1366 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘((𝐴 / 2) / (2↑𝑁))))
76 divdiv1 11343 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0)) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2 · (2↑𝑁))))
7745, 50, 53, 76syl3an 1155 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2 · (2↑𝑁))))
7852rpcnd 12425 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ)
79783ad2ant3 1130 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
8011, 79mulcomd 10654 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑁)) = ((2↑𝑁) · 2))
8111, 13, 15expp1zd 13511 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
8280, 81eqtr4d 2857 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑁)) = (2↑(𝑁 + 1)))
8382oveq2d 7164 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (2 · (2↑𝑁))) = (𝐴 / (2↑(𝑁 + 1))))
8477, 83eqtrd 2854 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2↑(𝑁 + 1))))
8584eqcomd 2825 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (2↑(𝑁 + 1))) = ((𝐴 / 2) / (2↑𝑁)))
8685fveq2d 6667 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) = (⌊‘((𝐴 / 2) / (2↑𝑁))))
8775, 86breqtrrd 5085 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1)))))
88 zgtp1leeq 44566 . . . 4 (((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ ∧ (⌊‘(𝐴 / (2↑(𝑁 + 1)))) ∈ ℤ) → ((((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) < (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∧ (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1))))) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1))))))
8988imp 409 . . 3 ((((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ ∧ (⌊‘(𝐴 / (2↑(𝑁 + 1)))) ∈ ℤ) ∧ (((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) < (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∧ (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1)))))) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1)))))
9018, 29, 64, 87, 89syl22anc 836 . 2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1)))))
9190eqcomd 2825 1 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1531  wcel 2108  wne 3014   class class class wbr 5057  cfv 6348  (class class class)co 7148  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   < clt 10667  cle 10668  cmin 10862   / cdiv 11289  cn 11630  2c2 11684  0cn0 11889  cz 11973  +crp 12381  cfl 13152  cexp 13421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-fzo 13026  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422
This theorem is referenced by:  dignn0flhalf  44668
  Copyright terms: Public domain W3C validator