Proof of Theorem dignn0flhalflem2
| Step | Hyp | Ref
| Expression |
| 1 | | zre 12597 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℝ) |
| 2 | 1 | rehalfcld 12493 |
. . . . . . . 8
⊢ (𝐴 ∈ ℤ → (𝐴 / 2) ∈
ℝ) |
| 3 | 2 | flcld 13820 |
. . . . . . 7
⊢ (𝐴 ∈ ℤ →
(⌊‘(𝐴 / 2))
∈ ℤ) |
| 4 | 3 | zred 12702 |
. . . . . 6
⊢ (𝐴 ∈ ℤ →
(⌊‘(𝐴 / 2))
∈ ℝ) |
| 5 | 4 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘(𝐴 / 2)) ∈ ℝ) |
| 6 | | 2re 12319 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
| 7 | 6 | a1i 11 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ 2 ∈ ℝ) |
| 8 | | id 22 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℕ0) |
| 9 | 7, 8 | reexpcld 14186 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (2↑𝑁) ∈
ℝ) |
| 10 | 9 | 3ad2ant3 1135 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2↑𝑁) ∈ ℝ) |
| 11 | | 2cnd 12323 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → 2 ∈ ℂ) |
| 12 | | 2ne0 12349 |
. . . . . . 7
⊢ 2 ≠
0 |
| 13 | 12 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → 2 ≠ 0) |
| 14 | | nn0z 12618 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
| 15 | 14 | 3ad2ant3 1135 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → 𝑁 ∈ ℤ) |
| 16 | 11, 13, 15 | expne0d 14175 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2↑𝑁) ≠ 0) |
| 17 | 5, 10, 16 | redivcld 12074 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → ((⌊‘(𝐴 / 2)) / (2↑𝑁)) ∈ ℝ) |
| 18 | 17 | flcld 13820 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ) |
| 19 | 1 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → 𝐴 ∈ ℝ) |
| 20 | 6 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → 2 ∈ ℝ) |
| 21 | | simp3 1138 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → 𝑁 ∈
ℕ0) |
| 22 | | 1nn0 12522 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
| 23 | 22 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → 1 ∈ ℕ0) |
| 24 | 21, 23 | nn0addcld 12571 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (𝑁 + 1) ∈
ℕ0) |
| 25 | 20, 24 | reexpcld 14186 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2↑(𝑁 + 1)) ∈ ℝ) |
| 26 | 15 | peano2zd 12705 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (𝑁 + 1) ∈ ℤ) |
| 27 | 11, 13, 26 | expne0d 14175 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2↑(𝑁 + 1)) ≠ 0) |
| 28 | 19, 25, 27 | redivcld 12074 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (𝐴 / (2↑(𝑁 + 1))) ∈ ℝ) |
| 29 | 28 | flcld 13820 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) ∈ ℤ) |
| 30 | | nn0p1nn 12545 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
| 31 | | dignn0flhalflem1 48562 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ (𝑁 + 1) ∈
ℕ) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) <
(⌊‘((𝐴 −
1) / (2↑(𝑁 +
1))))) |
| 32 | 30, 31 | syl3an3 1165 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) <
(⌊‘((𝐴 −
1) / (2↑(𝑁 +
1))))) |
| 33 | | 1zzd 12628 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → 1 ∈ ℤ) |
| 34 | | flsubz 48465 |
. . . . . 6
⊢ (((𝐴 / (2↑(𝑁 + 1))) ∈ ℝ ∧ 1 ∈
ℤ) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) = ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1)) |
| 35 | 28, 33, 34 | syl2anc 584 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) = ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1)) |
| 36 | 35 | eqcomd 2742 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) = (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1))) |
| 37 | | nnz 12614 |
. . . . . . . . . 10
⊢ (((𝐴 − 1) / 2) ∈ ℕ
→ ((𝐴 − 1) / 2)
∈ ℤ) |
| 38 | | zob 16383 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℤ → (((𝐴 + 1) / 2) ∈ ℤ ↔
((𝐴 − 1) / 2) ∈
ℤ)) |
| 39 | 37, 38 | imbitrrid 246 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℤ → (((𝐴 − 1) / 2) ∈ ℕ
→ ((𝐴 + 1) / 2) ∈
ℤ)) |
| 40 | 39 | imp 406 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ)
→ ((𝐴 + 1) / 2) ∈
ℤ) |
| 41 | | zofldiv2 48478 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 + 1) / 2) ∈ ℤ)
→ (⌊‘(𝐴 /
2)) = ((𝐴 − 1) /
2)) |
| 42 | 40, 41 | syldan 591 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ)
→ (⌊‘(𝐴 /
2)) = ((𝐴 − 1) /
2)) |
| 43 | 42 | 3adant3 1132 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘(𝐴 / 2)) = ((𝐴 − 1) / 2)) |
| 44 | 43 | fvoveq1d 7432 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(((𝐴 − 1) / 2) / (2↑𝑁)))) |
| 45 | | zcn 12598 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℂ) |
| 46 | | 1cnd 11235 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℤ → 1 ∈
ℂ) |
| 47 | 45, 46 | subcld 11599 |
. . . . . . . 8
⊢ (𝐴 ∈ ℤ → (𝐴 − 1) ∈
ℂ) |
| 48 | | 2rp 13018 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ+ |
| 49 | 48 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 − 1) / 2) ∈ ℕ
→ 2 ∈ ℝ+) |
| 50 | 49 | rpcnne0d 13065 |
. . . . . . . 8
⊢ (((𝐴 − 1) / 2) ∈ ℕ
→ (2 ∈ ℂ ∧ 2 ≠ 0)) |
| 51 | 48 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ 2 ∈ ℝ+) |
| 52 | 51, 14 | rpexpcld 14270 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (2↑𝑁) ∈
ℝ+) |
| 53 | 52 | rpcnne0d 13065 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ ((2↑𝑁) ∈
ℂ ∧ (2↑𝑁)
≠ 0)) |
| 54 | | divdiv1 11957 |
. . . . . . . 8
⊢ (((𝐴 − 1) ∈ ℂ ∧
(2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0)) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2 · (2↑𝑁)))) |
| 55 | 47, 50, 53, 54 | syl3an 1160 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2 · (2↑𝑁)))) |
| 56 | 10 | recnd 11268 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2↑𝑁) ∈ ℂ) |
| 57 | 11, 56 | mulcomd 11261 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2 · (2↑𝑁)) = ((2↑𝑁) · 2)) |
| 58 | 11, 21 | expp1d 14170 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) |
| 59 | 57, 58 | eqtr4d 2774 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2 · (2↑𝑁)) = (2↑(𝑁 + 1))) |
| 60 | 59 | oveq2d 7426 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → ((𝐴 − 1) / (2 · (2↑𝑁))) = ((𝐴 − 1) / (2↑(𝑁 + 1)))) |
| 61 | 55, 60 | eqtrd 2771 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2↑(𝑁 + 1)))) |
| 62 | 61 | fveq2d 6885 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘(((𝐴 − 1) / 2) / (2↑𝑁))) = (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1))))) |
| 63 | 44, 62 | eqtrd 2771 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1))))) |
| 64 | 32, 36, 63 | 3brtr4d 5156 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) <
(⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁)))) |
| 65 | 19 | rehalfcld 12493 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (𝐴 / 2) ∈ ℝ) |
| 66 | 65, 10, 16 | redivcld 12074 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → ((𝐴 / 2) / (2↑𝑁)) ∈ ℝ) |
| 67 | | reflcl 13818 |
. . . . . . 7
⊢ ((𝐴 / 2) ∈ ℝ →
(⌊‘(𝐴 / 2))
∈ ℝ) |
| 68 | 65, 67 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘(𝐴 / 2)) ∈ ℝ) |
| 69 | 48 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → 2 ∈ ℝ+) |
| 70 | 69, 15 | rpexpcld 14270 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2↑𝑁) ∈
ℝ+) |
| 71 | | flle 13821 |
. . . . . . 7
⊢ ((𝐴 / 2) ∈ ℝ →
(⌊‘(𝐴 / 2))
≤ (𝐴 /
2)) |
| 72 | 65, 71 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘(𝐴 / 2)) ≤ (𝐴 / 2)) |
| 73 | 68, 65, 70, 72 | lediv1dd 13114 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → ((⌊‘(𝐴 / 2)) / (2↑𝑁)) ≤ ((𝐴 / 2) / (2↑𝑁))) |
| 74 | | flwordi 13834 |
. . . . 5
⊢
((((⌊‘(𝐴
/ 2)) / (2↑𝑁)) ∈
ℝ ∧ ((𝐴 / 2) /
(2↑𝑁)) ∈ ℝ
∧ ((⌊‘(𝐴 /
2)) / (2↑𝑁)) ≤
((𝐴 / 2) / (2↑𝑁))) →
(⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘((𝐴 / 2) / (2↑𝑁)))) |
| 75 | 17, 66, 73, 74 | syl3anc 1373 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘((𝐴 / 2) / (2↑𝑁)))) |
| 76 | | divdiv1 11957 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ (2 ∈
ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0)) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2 · (2↑𝑁)))) |
| 77 | 45, 50, 53, 76 | syl3an 1160 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2 · (2↑𝑁)))) |
| 78 | 52 | rpcnd 13058 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ (2↑𝑁) ∈
ℂ) |
| 79 | 78 | 3ad2ant3 1135 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2↑𝑁) ∈ ℂ) |
| 80 | 11, 79 | mulcomd 11261 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2 · (2↑𝑁)) = ((2↑𝑁) · 2)) |
| 81 | 11, 13, 15 | expp1zd 14178 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) |
| 82 | 80, 81 | eqtr4d 2774 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2 · (2↑𝑁)) = (2↑(𝑁 + 1))) |
| 83 | 82 | oveq2d 7426 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (𝐴 / (2 · (2↑𝑁))) = (𝐴 / (2↑(𝑁 + 1)))) |
| 84 | 77, 83 | eqtrd 2771 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2↑(𝑁 + 1)))) |
| 85 | 84 | eqcomd 2742 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (𝐴 / (2↑(𝑁 + 1))) = ((𝐴 / 2) / (2↑𝑁))) |
| 86 | 85 | fveq2d 6885 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) = (⌊‘((𝐴 / 2) / (2↑𝑁)))) |
| 87 | 75, 86 | breqtrrd 5152 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1))))) |
| 88 | | zgtp1leeq 48464 |
. . . 4
⊢
(((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ ∧
(⌊‘(𝐴 /
(2↑(𝑁 + 1)))) ∈
ℤ) → ((((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) <
(⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∧
(⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1))))) →
(⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1)))))) |
| 89 | 88 | imp 406 |
. . 3
⊢
((((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ ∧
(⌊‘(𝐴 /
(2↑(𝑁 + 1)))) ∈
ℤ) ∧ (((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) <
(⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∧
(⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1)))))) →
(⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1))))) |
| 90 | 18, 29, 64, 87, 89 | syl22anc 838 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1))))) |
| 91 | 90 | eqcomd 2742 |
1
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) =
(⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁)))) |