Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0flhalflem2 Structured version   Visualization version   GIF version

Theorem dignn0flhalflem2 42931
Description: Lemma 2 for dignn0flhalf 42933. (Contributed by AV, 7-Jun-2012.)
Assertion
Ref Expression
dignn0flhalflem2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))))

Proof of Theorem dignn0flhalflem2
StepHypRef Expression
1 zre 11581 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
21rehalfcld 11479 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 / 2) ∈ ℝ)
32flcld 12800 . . . . . . 7 (𝐴 ∈ ℤ → (⌊‘(𝐴 / 2)) ∈ ℤ)
43zred 11682 . . . . . 6 (𝐴 ∈ ℤ → (⌊‘(𝐴 / 2)) ∈ ℝ)
543ad2ant1 1127 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ∈ ℝ)
6 2re 11290 . . . . . . . 8 2 ∈ ℝ
76a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
8 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
97, 8reexpcld 13225 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℝ)
1093ad2ant3 1129 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℝ)
11 2cnd 11293 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℂ)
12 2ne0 11313 . . . . . . 7 2 ≠ 0
1312a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 2 ≠ 0)
14 nn0z 11600 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
15143ad2ant3 1129 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
1611, 13, 15expne0d 13214 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ≠ 0)
175, 10, 16redivcld 11053 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / 2)) / (2↑𝑁)) ∈ ℝ)
1817flcld 12800 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ)
1913ad2ant1 1127 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℝ)
206a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℝ)
21 simp3 1132 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
22 1nn0 11508 . . . . . . . 8 1 ∈ ℕ0
2322a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℕ0)
2421, 23nn0addcld 11555 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0)
2520, 24reexpcld 13225 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) ∈ ℝ)
2615peano2zd 11685 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℤ)
2711, 13, 26expne0d 13214 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) ≠ 0)
2819, 25, 27redivcld 11053 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (2↑(𝑁 + 1))) ∈ ℝ)
2928flcld 12800 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) ∈ ℤ)
30 nn0p1nn 11532 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
31 dignn0flhalflem1 42930 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ (𝑁 + 1) ∈ ℕ) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) < (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1)))))
3230, 31syl3an3 1169 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) < (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1)))))
33 1zzd 11608 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℤ)
34 flsubz 42833 . . . . . 6 (((𝐴 / (2↑(𝑁 + 1))) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) = ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1))
3528, 33, 34syl2anc 573 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) = ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1))
3635eqcomd 2777 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) = (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)))
37 nnz 11599 . . . . . . . . . 10 (((𝐴 − 1) / 2) ∈ ℕ → ((𝐴 − 1) / 2) ∈ ℤ)
38 zob 15284 . . . . . . . . . 10 (𝐴 ∈ ℤ → (((𝐴 + 1) / 2) ∈ ℤ ↔ ((𝐴 − 1) / 2) ∈ ℤ))
3937, 38syl5ibr 236 . . . . . . . . 9 (𝐴 ∈ ℤ → (((𝐴 − 1) / 2) ∈ ℕ → ((𝐴 + 1) / 2) ∈ ℤ))
4039imp 393 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ) → ((𝐴 + 1) / 2) ∈ ℤ)
41 zofldiv2 42846 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 + 1) / 2) ∈ ℤ) → (⌊‘(𝐴 / 2)) = ((𝐴 − 1) / 2))
4240, 41syldan 579 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ) → (⌊‘(𝐴 / 2)) = ((𝐴 − 1) / 2))
43423adant3 1126 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / 2)) = ((𝐴 − 1) / 2))
4443fvoveq1d 6813 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(((𝐴 − 1) / 2) / (2↑𝑁))))
45 zcn 11582 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
46 1cnd 10256 . . . . . . . . 9 (𝐴 ∈ ℤ → 1 ∈ ℂ)
4745, 46subcld 10592 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℂ)
48 2rp 12033 . . . . . . . . . 10 2 ∈ ℝ+
4948a1i 11 . . . . . . . . 9 (((𝐴 − 1) / 2) ∈ ℕ → 2 ∈ ℝ+)
5049rpcnne0d 12077 . . . . . . . 8 (((𝐴 − 1) / 2) ∈ ℕ → (2 ∈ ℂ ∧ 2 ≠ 0))
5148a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 2 ∈ ℝ+)
5251, 14rpexpcld 13232 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℝ+)
5352rpcnne0d 12077 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0))
54 divdiv1 10936 . . . . . . . 8 (((𝐴 − 1) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0)) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2 · (2↑𝑁))))
5547, 50, 53, 54syl3an 1163 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2 · (2↑𝑁))))
5610recnd 10268 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
5711, 56mulcomd 10261 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑁)) = ((2↑𝑁) · 2))
5811, 21expp1d 13209 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
5957, 58eqtr4d 2808 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑁)) = (2↑(𝑁 + 1)))
6059oveq2d 6807 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 − 1) / (2 · (2↑𝑁))) = ((𝐴 − 1) / (2↑(𝑁 + 1))))
6155, 60eqtrd 2805 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2↑(𝑁 + 1))))
6261fveq2d 6334 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(((𝐴 − 1) / 2) / (2↑𝑁))) = (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1)))))
6344, 62eqtrd 2805 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1)))))
6432, 36, 633brtr4d 4818 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) < (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))))
6519rehalfcld 11479 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / 2) ∈ ℝ)
6665, 10, 16redivcld 11053 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 2) / (2↑𝑁)) ∈ ℝ)
67 reflcl 12798 . . . . . . 7 ((𝐴 / 2) ∈ ℝ → (⌊‘(𝐴 / 2)) ∈ ℝ)
6865, 67syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ∈ ℝ)
6948a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℝ+)
7069, 15rpexpcld 13232 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℝ+)
71 flle 12801 . . . . . . 7 ((𝐴 / 2) ∈ ℝ → (⌊‘(𝐴 / 2)) ≤ (𝐴 / 2))
7265, 71syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ≤ (𝐴 / 2))
7368, 65, 70, 72lediv1dd 12126 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / 2)) / (2↑𝑁)) ≤ ((𝐴 / 2) / (2↑𝑁)))
74 flwordi 12814 . . . . 5 ((((⌊‘(𝐴 / 2)) / (2↑𝑁)) ∈ ℝ ∧ ((𝐴 / 2) / (2↑𝑁)) ∈ ℝ ∧ ((⌊‘(𝐴 / 2)) / (2↑𝑁)) ≤ ((𝐴 / 2) / (2↑𝑁))) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘((𝐴 / 2) / (2↑𝑁))))
7517, 66, 73, 74syl3anc 1476 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘((𝐴 / 2) / (2↑𝑁))))
76 divdiv1 10936 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0)) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2 · (2↑𝑁))))
7745, 50, 53, 76syl3an 1163 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2 · (2↑𝑁))))
7852rpcnd 12070 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ)
79783ad2ant3 1129 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
8011, 79mulcomd 10261 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑁)) = ((2↑𝑁) · 2))
8111, 13, 15expp1zd 13217 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
8280, 81eqtr4d 2808 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑁)) = (2↑(𝑁 + 1)))
8382oveq2d 6807 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (2 · (2↑𝑁))) = (𝐴 / (2↑(𝑁 + 1))))
8477, 83eqtrd 2805 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2↑(𝑁 + 1))))
8584eqcomd 2777 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (2↑(𝑁 + 1))) = ((𝐴 / 2) / (2↑𝑁)))
8685fveq2d 6334 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) = (⌊‘((𝐴 / 2) / (2↑𝑁))))
8775, 86breqtrrd 4814 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1)))))
88 zgtp1leeq 42832 . . . 4 (((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ ∧ (⌊‘(𝐴 / (2↑(𝑁 + 1)))) ∈ ℤ) → ((((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) < (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∧ (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1))))) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1))))))
8988imp 393 . . 3 ((((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ ∧ (⌊‘(𝐴 / (2↑(𝑁 + 1)))) ∈ ℤ) ∧ (((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) < (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∧ (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1)))))) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1)))))
9018, 29, 64, 87, 89syl22anc 1477 . 2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1)))))
9190eqcomd 2777 1 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4786  cfv 6029  (class class class)co 6791  cc 10134  cr 10135  0cc0 10136  1c1 10137   + caddc 10139   · cmul 10141   < clt 10274  cle 10275  cmin 10466   / cdiv 10884  cn 11220  2c2 11270  0cn0 11492  cz 11577  +crp 12028  cfl 12792  cexp 13060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-sup 8502  df-inf 8503  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-div 10885  df-nn 11221  df-2 11279  df-n0 11493  df-z 11578  df-uz 11887  df-rp 12029  df-fz 12527  df-fzo 12667  df-fl 12794  df-mod 12870  df-seq 13002  df-exp 13061
This theorem is referenced by:  dignn0flhalf  42933
  Copyright terms: Public domain W3C validator