Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0flhalflem2 Structured version   Visualization version   GIF version

Theorem dignn0flhalflem2 45030
Description: Lemma 2 for dignn0flhalf 45032. (Contributed by AV, 7-Jun-2012.)
Assertion
Ref Expression
dignn0flhalflem2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))))

Proof of Theorem dignn0flhalflem2
StepHypRef Expression
1 zre 11973 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
21rehalfcld 11872 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 / 2) ∈ ℝ)
32flcld 13163 . . . . . . 7 (𝐴 ∈ ℤ → (⌊‘(𝐴 / 2)) ∈ ℤ)
43zred 12075 . . . . . 6 (𝐴 ∈ ℤ → (⌊‘(𝐴 / 2)) ∈ ℝ)
543ad2ant1 1130 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ∈ ℝ)
6 2re 11699 . . . . . . . 8 2 ∈ ℝ
76a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
8 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
97, 8reexpcld 13523 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℝ)
1093ad2ant3 1132 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℝ)
11 2cnd 11703 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℂ)
12 2ne0 11729 . . . . . . 7 2 ≠ 0
1312a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 2 ≠ 0)
14 nn0z 11993 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
15143ad2ant3 1132 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
1611, 13, 15expne0d 13512 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ≠ 0)
175, 10, 16redivcld 11457 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / 2)) / (2↑𝑁)) ∈ ℝ)
1817flcld 13163 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ)
1913ad2ant1 1130 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℝ)
206a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℝ)
21 simp3 1135 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
22 1nn0 11901 . . . . . . . 8 1 ∈ ℕ0
2322a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℕ0)
2421, 23nn0addcld 11947 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0)
2520, 24reexpcld 13523 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) ∈ ℝ)
2615peano2zd 12078 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℤ)
2711, 13, 26expne0d 13512 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) ≠ 0)
2819, 25, 27redivcld 11457 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (2↑(𝑁 + 1))) ∈ ℝ)
2928flcld 13163 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) ∈ ℤ)
30 nn0p1nn 11924 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
31 dignn0flhalflem1 45029 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ (𝑁 + 1) ∈ ℕ) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) < (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1)))))
3230, 31syl3an3 1162 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) < (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1)))))
33 1zzd 12001 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℤ)
34 flsubz 44931 . . . . . 6 (((𝐴 / (2↑(𝑁 + 1))) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) = ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1))
3528, 33, 34syl2anc 587 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) = ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1))
3635eqcomd 2804 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) = (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)))
37 nnz 11992 . . . . . . . . . 10 (((𝐴 − 1) / 2) ∈ ℕ → ((𝐴 − 1) / 2) ∈ ℤ)
38 zob 15700 . . . . . . . . . 10 (𝐴 ∈ ℤ → (((𝐴 + 1) / 2) ∈ ℤ ↔ ((𝐴 − 1) / 2) ∈ ℤ))
3937, 38syl5ibr 249 . . . . . . . . 9 (𝐴 ∈ ℤ → (((𝐴 − 1) / 2) ∈ ℕ → ((𝐴 + 1) / 2) ∈ ℤ))
4039imp 410 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ) → ((𝐴 + 1) / 2) ∈ ℤ)
41 zofldiv2 44945 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 + 1) / 2) ∈ ℤ) → (⌊‘(𝐴 / 2)) = ((𝐴 − 1) / 2))
4240, 41syldan 594 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ) → (⌊‘(𝐴 / 2)) = ((𝐴 − 1) / 2))
43423adant3 1129 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / 2)) = ((𝐴 − 1) / 2))
4443fvoveq1d 7157 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(((𝐴 − 1) / 2) / (2↑𝑁))))
45 zcn 11974 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
46 1cnd 10625 . . . . . . . . 9 (𝐴 ∈ ℤ → 1 ∈ ℂ)
4745, 46subcld 10986 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℂ)
48 2rp 12382 . . . . . . . . . 10 2 ∈ ℝ+
4948a1i 11 . . . . . . . . 9 (((𝐴 − 1) / 2) ∈ ℕ → 2 ∈ ℝ+)
5049rpcnne0d 12428 . . . . . . . 8 (((𝐴 − 1) / 2) ∈ ℕ → (2 ∈ ℂ ∧ 2 ≠ 0))
5148a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 2 ∈ ℝ+)
5251, 14rpexpcld 13604 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℝ+)
5352rpcnne0d 12428 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0))
54 divdiv1 11340 . . . . . . . 8 (((𝐴 − 1) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0)) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2 · (2↑𝑁))))
5547, 50, 53, 54syl3an 1157 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2 · (2↑𝑁))))
5610recnd 10658 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
5711, 56mulcomd 10651 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑁)) = ((2↑𝑁) · 2))
5811, 21expp1d 13507 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
5957, 58eqtr4d 2836 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑁)) = (2↑(𝑁 + 1)))
6059oveq2d 7151 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 − 1) / (2 · (2↑𝑁))) = ((𝐴 − 1) / (2↑(𝑁 + 1))))
6155, 60eqtrd 2833 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2↑(𝑁 + 1))))
6261fveq2d 6649 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(((𝐴 − 1) / 2) / (2↑𝑁))) = (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1)))))
6344, 62eqtrd 2833 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1)))))
6432, 36, 633brtr4d 5062 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) < (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))))
6519rehalfcld 11872 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / 2) ∈ ℝ)
6665, 10, 16redivcld 11457 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 2) / (2↑𝑁)) ∈ ℝ)
67 reflcl 13161 . . . . . . 7 ((𝐴 / 2) ∈ ℝ → (⌊‘(𝐴 / 2)) ∈ ℝ)
6865, 67syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ∈ ℝ)
6948a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℝ+)
7069, 15rpexpcld 13604 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℝ+)
71 flle 13164 . . . . . . 7 ((𝐴 / 2) ∈ ℝ → (⌊‘(𝐴 / 2)) ≤ (𝐴 / 2))
7265, 71syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ≤ (𝐴 / 2))
7368, 65, 70, 72lediv1dd 12477 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / 2)) / (2↑𝑁)) ≤ ((𝐴 / 2) / (2↑𝑁)))
74 flwordi 13177 . . . . 5 ((((⌊‘(𝐴 / 2)) / (2↑𝑁)) ∈ ℝ ∧ ((𝐴 / 2) / (2↑𝑁)) ∈ ℝ ∧ ((⌊‘(𝐴 / 2)) / (2↑𝑁)) ≤ ((𝐴 / 2) / (2↑𝑁))) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘((𝐴 / 2) / (2↑𝑁))))
7517, 66, 73, 74syl3anc 1368 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘((𝐴 / 2) / (2↑𝑁))))
76 divdiv1 11340 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0)) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2 · (2↑𝑁))))
7745, 50, 53, 76syl3an 1157 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2 · (2↑𝑁))))
7852rpcnd 12421 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ)
79783ad2ant3 1132 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
8011, 79mulcomd 10651 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑁)) = ((2↑𝑁) · 2))
8111, 13, 15expp1zd 13515 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
8280, 81eqtr4d 2836 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑁)) = (2↑(𝑁 + 1)))
8382oveq2d 7151 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (2 · (2↑𝑁))) = (𝐴 / (2↑(𝑁 + 1))))
8477, 83eqtrd 2833 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2↑(𝑁 + 1))))
8584eqcomd 2804 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (2↑(𝑁 + 1))) = ((𝐴 / 2) / (2↑𝑁)))
8685fveq2d 6649 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) = (⌊‘((𝐴 / 2) / (2↑𝑁))))
8775, 86breqtrrd 5058 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1)))))
88 zgtp1leeq 44930 . . . 4 (((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ ∧ (⌊‘(𝐴 / (2↑(𝑁 + 1)))) ∈ ℤ) → ((((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) < (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∧ (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1))))) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1))))))
8988imp 410 . . 3 ((((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ ∧ (⌊‘(𝐴 / (2↑(𝑁 + 1)))) ∈ ℤ) ∧ (((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) < (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∧ (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1)))))) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1)))))
9018, 29, 64, 87, 89syl22anc 837 . 2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1)))))
9190eqcomd 2804 1 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  +crp 12377  cfl 13155  cexp 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426
This theorem is referenced by:  dignn0flhalf  45032
  Copyright terms: Public domain W3C validator