Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0flhalflem2 Structured version   Visualization version   GIF version

Theorem dignn0flhalflem2 46692
Description: Lemma 2 for dignn0flhalf 46694. (Contributed by AV, 7-Jun-2012.)
Assertion
Ref Expression
dignn0flhalflem2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))))

Proof of Theorem dignn0flhalflem2
StepHypRef Expression
1 zre 12503 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
21rehalfcld 12400 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 / 2) ∈ ℝ)
32flcld 13703 . . . . . . 7 (𝐴 ∈ ℤ → (⌊‘(𝐴 / 2)) ∈ ℤ)
43zred 12607 . . . . . 6 (𝐴 ∈ ℤ → (⌊‘(𝐴 / 2)) ∈ ℝ)
543ad2ant1 1133 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ∈ ℝ)
6 2re 12227 . . . . . . . 8 2 ∈ ℝ
76a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
8 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
97, 8reexpcld 14068 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℝ)
1093ad2ant3 1135 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℝ)
11 2cnd 12231 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℂ)
12 2ne0 12257 . . . . . . 7 2 ≠ 0
1312a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 2 ≠ 0)
14 nn0z 12524 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
15143ad2ant3 1135 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
1611, 13, 15expne0d 14057 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ≠ 0)
175, 10, 16redivcld 11983 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / 2)) / (2↑𝑁)) ∈ ℝ)
1817flcld 13703 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ)
1913ad2ant1 1133 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℝ)
206a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℝ)
21 simp3 1138 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
22 1nn0 12429 . . . . . . . 8 1 ∈ ℕ0
2322a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℕ0)
2421, 23nn0addcld 12477 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0)
2520, 24reexpcld 14068 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) ∈ ℝ)
2615peano2zd 12610 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℤ)
2711, 13, 26expne0d 14057 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) ≠ 0)
2819, 25, 27redivcld 11983 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (2↑(𝑁 + 1))) ∈ ℝ)
2928flcld 13703 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) ∈ ℤ)
30 nn0p1nn 12452 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
31 dignn0flhalflem1 46691 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ (𝑁 + 1) ∈ ℕ) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) < (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1)))))
3230, 31syl3an3 1165 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) < (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1)))))
33 1zzd 12534 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℤ)
34 flsubz 46593 . . . . . 6 (((𝐴 / (2↑(𝑁 + 1))) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) = ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1))
3528, 33, 34syl2anc 584 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) = ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1))
3635eqcomd 2742 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) = (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)))
37 nnz 12520 . . . . . . . . . 10 (((𝐴 − 1) / 2) ∈ ℕ → ((𝐴 − 1) / 2) ∈ ℤ)
38 zob 16241 . . . . . . . . . 10 (𝐴 ∈ ℤ → (((𝐴 + 1) / 2) ∈ ℤ ↔ ((𝐴 − 1) / 2) ∈ ℤ))
3937, 38syl5ibr 245 . . . . . . . . 9 (𝐴 ∈ ℤ → (((𝐴 − 1) / 2) ∈ ℕ → ((𝐴 + 1) / 2) ∈ ℤ))
4039imp 407 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ) → ((𝐴 + 1) / 2) ∈ ℤ)
41 zofldiv2 46607 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 + 1) / 2) ∈ ℤ) → (⌊‘(𝐴 / 2)) = ((𝐴 − 1) / 2))
4240, 41syldan 591 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ) → (⌊‘(𝐴 / 2)) = ((𝐴 − 1) / 2))
43423adant3 1132 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / 2)) = ((𝐴 − 1) / 2))
4443fvoveq1d 7379 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(((𝐴 − 1) / 2) / (2↑𝑁))))
45 zcn 12504 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
46 1cnd 11150 . . . . . . . . 9 (𝐴 ∈ ℤ → 1 ∈ ℂ)
4745, 46subcld 11512 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℂ)
48 2rp 12920 . . . . . . . . . 10 2 ∈ ℝ+
4948a1i 11 . . . . . . . . 9 (((𝐴 − 1) / 2) ∈ ℕ → 2 ∈ ℝ+)
5049rpcnne0d 12966 . . . . . . . 8 (((𝐴 − 1) / 2) ∈ ℕ → (2 ∈ ℂ ∧ 2 ≠ 0))
5148a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 2 ∈ ℝ+)
5251, 14rpexpcld 14150 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℝ+)
5352rpcnne0d 12966 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0))
54 divdiv1 11866 . . . . . . . 8 (((𝐴 − 1) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0)) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2 · (2↑𝑁))))
5547, 50, 53, 54syl3an 1160 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2 · (2↑𝑁))))
5610recnd 11183 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
5711, 56mulcomd 11176 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑁)) = ((2↑𝑁) · 2))
5811, 21expp1d 14052 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
5957, 58eqtr4d 2779 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑁)) = (2↑(𝑁 + 1)))
6059oveq2d 7373 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 − 1) / (2 · (2↑𝑁))) = ((𝐴 − 1) / (2↑(𝑁 + 1))))
6155, 60eqtrd 2776 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2↑(𝑁 + 1))))
6261fveq2d 6846 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(((𝐴 − 1) / 2) / (2↑𝑁))) = (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1)))))
6344, 62eqtrd 2776 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1)))))
6432, 36, 633brtr4d 5137 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) < (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))))
6519rehalfcld 12400 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / 2) ∈ ℝ)
6665, 10, 16redivcld 11983 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 2) / (2↑𝑁)) ∈ ℝ)
67 reflcl 13701 . . . . . . 7 ((𝐴 / 2) ∈ ℝ → (⌊‘(𝐴 / 2)) ∈ ℝ)
6865, 67syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ∈ ℝ)
6948a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℝ+)
7069, 15rpexpcld 14150 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℝ+)
71 flle 13704 . . . . . . 7 ((𝐴 / 2) ∈ ℝ → (⌊‘(𝐴 / 2)) ≤ (𝐴 / 2))
7265, 71syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ≤ (𝐴 / 2))
7368, 65, 70, 72lediv1dd 13015 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / 2)) / (2↑𝑁)) ≤ ((𝐴 / 2) / (2↑𝑁)))
74 flwordi 13717 . . . . 5 ((((⌊‘(𝐴 / 2)) / (2↑𝑁)) ∈ ℝ ∧ ((𝐴 / 2) / (2↑𝑁)) ∈ ℝ ∧ ((⌊‘(𝐴 / 2)) / (2↑𝑁)) ≤ ((𝐴 / 2) / (2↑𝑁))) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘((𝐴 / 2) / (2↑𝑁))))
7517, 66, 73, 74syl3anc 1371 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘((𝐴 / 2) / (2↑𝑁))))
76 divdiv1 11866 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0)) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2 · (2↑𝑁))))
7745, 50, 53, 76syl3an 1160 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2 · (2↑𝑁))))
7852rpcnd 12959 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ)
79783ad2ant3 1135 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
8011, 79mulcomd 11176 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑁)) = ((2↑𝑁) · 2))
8111, 13, 15expp1zd 14060 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
8280, 81eqtr4d 2779 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑁)) = (2↑(𝑁 + 1)))
8382oveq2d 7373 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (2 · (2↑𝑁))) = (𝐴 / (2↑(𝑁 + 1))))
8477, 83eqtrd 2776 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2↑(𝑁 + 1))))
8584eqcomd 2742 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (2↑(𝑁 + 1))) = ((𝐴 / 2) / (2↑𝑁)))
8685fveq2d 6846 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) = (⌊‘((𝐴 / 2) / (2↑𝑁))))
8775, 86breqtrrd 5133 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1)))))
88 zgtp1leeq 46592 . . . 4 (((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ ∧ (⌊‘(𝐴 / (2↑(𝑁 + 1)))) ∈ ℤ) → ((((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) < (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∧ (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1))))) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1))))))
8988imp 407 . . 3 ((((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ ∧ (⌊‘(𝐴 / (2↑(𝑁 + 1)))) ∈ ℤ) ∧ (((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) < (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∧ (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1)))))) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1)))))
9018, 29, 64, 87, 89syl22anc 837 . 2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1)))))
9190eqcomd 2742 1 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  +crp 12915  cfl 13695  cexp 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968
This theorem is referenced by:  dignn0flhalf  46694
  Copyright terms: Public domain W3C validator