Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0flhalflem2 Structured version   Visualization version   GIF version

Theorem dignn0flhalflem2 48350
Description: Lemma 2 for dignn0flhalf 48352. (Contributed by AV, 7-Jun-2012.)
Assertion
Ref Expression
dignn0flhalflem2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))))

Proof of Theorem dignn0flhalflem2
StepHypRef Expression
1 zre 12643 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
21rehalfcld 12540 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 / 2) ∈ ℝ)
32flcld 13849 . . . . . . 7 (𝐴 ∈ ℤ → (⌊‘(𝐴 / 2)) ∈ ℤ)
43zred 12747 . . . . . 6 (𝐴 ∈ ℤ → (⌊‘(𝐴 / 2)) ∈ ℝ)
543ad2ant1 1133 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ∈ ℝ)
6 2re 12367 . . . . . . . 8 2 ∈ ℝ
76a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 2 ∈ ℝ)
8 id 22 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
97, 8reexpcld 14213 . . . . . 6 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℝ)
1093ad2ant3 1135 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℝ)
11 2cnd 12371 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℂ)
12 2ne0 12397 . . . . . . 7 2 ≠ 0
1312a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 2 ≠ 0)
14 nn0z 12664 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
15143ad2ant3 1135 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
1611, 13, 15expne0d 14202 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ≠ 0)
175, 10, 16redivcld 12122 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / 2)) / (2↑𝑁)) ∈ ℝ)
1817flcld 13849 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ)
1913ad2ant1 1133 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℝ)
206a1i 11 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℝ)
21 simp3 1138 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
22 1nn0 12569 . . . . . . . 8 1 ∈ ℕ0
2322a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℕ0)
2421, 23nn0addcld 12617 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0)
2520, 24reexpcld 14213 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) ∈ ℝ)
2615peano2zd 12750 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℤ)
2711, 13, 26expne0d 14202 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) ≠ 0)
2819, 25, 27redivcld 12122 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (2↑(𝑁 + 1))) ∈ ℝ)
2928flcld 13849 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) ∈ ℤ)
30 nn0p1nn 12592 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
31 dignn0flhalflem1 48349 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ (𝑁 + 1) ∈ ℕ) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) < (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1)))))
3230, 31syl3an3 1165 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) < (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1)))))
33 1zzd 12674 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℤ)
34 flsubz 48251 . . . . . 6 (((𝐴 / (2↑(𝑁 + 1))) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) = ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1))
3528, 33, 34syl2anc 583 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) = ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1))
3635eqcomd 2746 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) = (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)))
37 nnz 12660 . . . . . . . . . 10 (((𝐴 − 1) / 2) ∈ ℕ → ((𝐴 − 1) / 2) ∈ ℤ)
38 zob 16407 . . . . . . . . . 10 (𝐴 ∈ ℤ → (((𝐴 + 1) / 2) ∈ ℤ ↔ ((𝐴 − 1) / 2) ∈ ℤ))
3937, 38imbitrrid 246 . . . . . . . . 9 (𝐴 ∈ ℤ → (((𝐴 − 1) / 2) ∈ ℕ → ((𝐴 + 1) / 2) ∈ ℤ))
4039imp 406 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ) → ((𝐴 + 1) / 2) ∈ ℤ)
41 zofldiv2 48265 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 + 1) / 2) ∈ ℤ) → (⌊‘(𝐴 / 2)) = ((𝐴 − 1) / 2))
4240, 41syldan 590 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ) → (⌊‘(𝐴 / 2)) = ((𝐴 − 1) / 2))
43423adant3 1132 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / 2)) = ((𝐴 − 1) / 2))
4443fvoveq1d 7470 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(((𝐴 − 1) / 2) / (2↑𝑁))))
45 zcn 12644 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
46 1cnd 11285 . . . . . . . . 9 (𝐴 ∈ ℤ → 1 ∈ ℂ)
4745, 46subcld 11647 . . . . . . . 8 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℂ)
48 2rp 13062 . . . . . . . . . 10 2 ∈ ℝ+
4948a1i 11 . . . . . . . . 9 (((𝐴 − 1) / 2) ∈ ℕ → 2 ∈ ℝ+)
5049rpcnne0d 13108 . . . . . . . 8 (((𝐴 − 1) / 2) ∈ ℕ → (2 ∈ ℂ ∧ 2 ≠ 0))
5148a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 2 ∈ ℝ+)
5251, 14rpexpcld 14296 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℝ+)
5352rpcnne0d 13108 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0))
54 divdiv1 12005 . . . . . . . 8 (((𝐴 − 1) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0)) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2 · (2↑𝑁))))
5547, 50, 53, 54syl3an 1160 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2 · (2↑𝑁))))
5610recnd 11318 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
5711, 56mulcomd 11311 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑁)) = ((2↑𝑁) · 2))
5811, 21expp1d 14197 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
5957, 58eqtr4d 2783 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑁)) = (2↑(𝑁 + 1)))
6059oveq2d 7464 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 − 1) / (2 · (2↑𝑁))) = ((𝐴 − 1) / (2↑(𝑁 + 1))))
6155, 60eqtrd 2780 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2↑(𝑁 + 1))))
6261fveq2d 6924 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(((𝐴 − 1) / 2) / (2↑𝑁))) = (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1)))))
6344, 62eqtrd 2780 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1)))))
6432, 36, 633brtr4d 5198 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) < (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))))
6519rehalfcld 12540 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / 2) ∈ ℝ)
6665, 10, 16redivcld 12122 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 2) / (2↑𝑁)) ∈ ℝ)
67 reflcl 13847 . . . . . . 7 ((𝐴 / 2) ∈ ℝ → (⌊‘(𝐴 / 2)) ∈ ℝ)
6865, 67syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ∈ ℝ)
6948a1i 11 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → 2 ∈ ℝ+)
7069, 15rpexpcld 14296 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℝ+)
71 flle 13850 . . . . . . 7 ((𝐴 / 2) ∈ ℝ → (⌊‘(𝐴 / 2)) ≤ (𝐴 / 2))
7265, 71syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ≤ (𝐴 / 2))
7368, 65, 70, 72lediv1dd 13157 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((⌊‘(𝐴 / 2)) / (2↑𝑁)) ≤ ((𝐴 / 2) / (2↑𝑁)))
74 flwordi 13863 . . . . 5 ((((⌊‘(𝐴 / 2)) / (2↑𝑁)) ∈ ℝ ∧ ((𝐴 / 2) / (2↑𝑁)) ∈ ℝ ∧ ((⌊‘(𝐴 / 2)) / (2↑𝑁)) ≤ ((𝐴 / 2) / (2↑𝑁))) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘((𝐴 / 2) / (2↑𝑁))))
7517, 66, 73, 74syl3anc 1371 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘((𝐴 / 2) / (2↑𝑁))))
76 divdiv1 12005 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0)) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2 · (2↑𝑁))))
7745, 50, 53, 76syl3an 1160 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2 · (2↑𝑁))))
7852rpcnd 13101 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ)
79783ad2ant3 1135 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑𝑁) ∈ ℂ)
8011, 79mulcomd 11311 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑁)) = ((2↑𝑁) · 2))
8111, 13, 15expp1zd 14205 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2))
8280, 81eqtr4d 2783 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (2 · (2↑𝑁)) = (2↑(𝑁 + 1)))
8382oveq2d 7464 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (2 · (2↑𝑁))) = (𝐴 / (2↑(𝑁 + 1))))
8477, 83eqtrd 2780 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2↑(𝑁 + 1))))
8584eqcomd 2746 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 / (2↑(𝑁 + 1))) = ((𝐴 / 2) / (2↑𝑁)))
8685fveq2d 6924 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) = (⌊‘((𝐴 / 2) / (2↑𝑁))))
8775, 86breqtrrd 5194 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1)))))
88 zgtp1leeq 48250 . . . 4 (((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ ∧ (⌊‘(𝐴 / (2↑(𝑁 + 1)))) ∈ ℤ) → ((((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) < (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∧ (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1))))) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1))))))
8988imp 406 . . 3 ((((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ ∧ (⌊‘(𝐴 / (2↑(𝑁 + 1)))) ∈ ℤ) ∧ (((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) < (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∧ (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1)))))) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1)))))
9018, 29, 64, 87, 89syl22anc 838 . 2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1)))))
9190eqcomd 2746 1 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cz 12639  +crp 13057  cfl 13841  cexp 14112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113
This theorem is referenced by:  dignn0flhalf  48352
  Copyright terms: Public domain W3C validator