Proof of Theorem dignn0flhalflem2
Step | Hyp | Ref
| Expression |
1 | | zre 12037 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℝ) |
2 | 1 | rehalfcld 11934 |
. . . . . . . 8
⊢ (𝐴 ∈ ℤ → (𝐴 / 2) ∈
ℝ) |
3 | 2 | flcld 13230 |
. . . . . . 7
⊢ (𝐴 ∈ ℤ →
(⌊‘(𝐴 / 2))
∈ ℤ) |
4 | 3 | zred 12139 |
. . . . . 6
⊢ (𝐴 ∈ ℤ →
(⌊‘(𝐴 / 2))
∈ ℝ) |
5 | 4 | 3ad2ant1 1130 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘(𝐴 / 2)) ∈ ℝ) |
6 | | 2re 11761 |
. . . . . . . 8
⊢ 2 ∈
ℝ |
7 | 6 | a1i 11 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ 2 ∈ ℝ) |
8 | | id 22 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℕ0) |
9 | 7, 8 | reexpcld 13590 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (2↑𝑁) ∈
ℝ) |
10 | 9 | 3ad2ant3 1132 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2↑𝑁) ∈ ℝ) |
11 | | 2cnd 11765 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → 2 ∈ ℂ) |
12 | | 2ne0 11791 |
. . . . . . 7
⊢ 2 ≠
0 |
13 | 12 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → 2 ≠ 0) |
14 | | nn0z 12057 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
15 | 14 | 3ad2ant3 1132 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → 𝑁 ∈ ℤ) |
16 | 11, 13, 15 | expne0d 13579 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2↑𝑁) ≠ 0) |
17 | 5, 10, 16 | redivcld 11519 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → ((⌊‘(𝐴 / 2)) / (2↑𝑁)) ∈ ℝ) |
18 | 17 | flcld 13230 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ) |
19 | 1 | 3ad2ant1 1130 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → 𝐴 ∈ ℝ) |
20 | 6 | a1i 11 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → 2 ∈ ℝ) |
21 | | simp3 1135 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → 𝑁 ∈
ℕ0) |
22 | | 1nn0 11963 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
23 | 22 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → 1 ∈ ℕ0) |
24 | 21, 23 | nn0addcld 12011 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (𝑁 + 1) ∈
ℕ0) |
25 | 20, 24 | reexpcld 13590 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2↑(𝑁 + 1)) ∈ ℝ) |
26 | 15 | peano2zd 12142 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (𝑁 + 1) ∈ ℤ) |
27 | 11, 13, 26 | expne0d 13579 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2↑(𝑁 + 1)) ≠ 0) |
28 | 19, 25, 27 | redivcld 11519 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (𝐴 / (2↑(𝑁 + 1))) ∈ ℝ) |
29 | 28 | flcld 13230 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) ∈ ℤ) |
30 | | nn0p1nn 11986 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
31 | | dignn0flhalflem1 45453 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ (𝑁 + 1) ∈
ℕ) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) <
(⌊‘((𝐴 −
1) / (2↑(𝑁 +
1))))) |
32 | 30, 31 | syl3an3 1162 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) <
(⌊‘((𝐴 −
1) / (2↑(𝑁 +
1))))) |
33 | | 1zzd 12065 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → 1 ∈ ℤ) |
34 | | flsubz 45355 |
. . . . . 6
⊢ (((𝐴 / (2↑(𝑁 + 1))) ∈ ℝ ∧ 1 ∈
ℤ) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) = ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1)) |
35 | 28, 33, 34 | syl2anc 587 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1)) = ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1)) |
36 | 35 | eqcomd 2764 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) = (⌊‘((𝐴 / (2↑(𝑁 + 1))) − 1))) |
37 | | nnz 12056 |
. . . . . . . . . 10
⊢ (((𝐴 − 1) / 2) ∈ ℕ
→ ((𝐴 − 1) / 2)
∈ ℤ) |
38 | | zob 15773 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℤ → (((𝐴 + 1) / 2) ∈ ℤ ↔
((𝐴 − 1) / 2) ∈
ℤ)) |
39 | 37, 38 | syl5ibr 249 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℤ → (((𝐴 − 1) / 2) ∈ ℕ
→ ((𝐴 + 1) / 2) ∈
ℤ)) |
40 | 39 | imp 410 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ)
→ ((𝐴 + 1) / 2) ∈
ℤ) |
41 | | zofldiv2 45369 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 + 1) / 2) ∈ ℤ)
→ (⌊‘(𝐴 /
2)) = ((𝐴 − 1) /
2)) |
42 | 40, 41 | syldan 594 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ)
→ (⌊‘(𝐴 /
2)) = ((𝐴 − 1) /
2)) |
43 | 42 | 3adant3 1129 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘(𝐴 / 2)) = ((𝐴 − 1) / 2)) |
44 | 43 | fvoveq1d 7178 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(((𝐴 − 1) / 2) / (2↑𝑁)))) |
45 | | zcn 12038 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℂ) |
46 | | 1cnd 10687 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℤ → 1 ∈
ℂ) |
47 | 45, 46 | subcld 11048 |
. . . . . . . 8
⊢ (𝐴 ∈ ℤ → (𝐴 − 1) ∈
ℂ) |
48 | | 2rp 12448 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ+ |
49 | 48 | a1i 11 |
. . . . . . . . 9
⊢ (((𝐴 − 1) / 2) ∈ ℕ
→ 2 ∈ ℝ+) |
50 | 49 | rpcnne0d 12494 |
. . . . . . . 8
⊢ (((𝐴 − 1) / 2) ∈ ℕ
→ (2 ∈ ℂ ∧ 2 ≠ 0)) |
51 | 48 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ 2 ∈ ℝ+) |
52 | 51, 14 | rpexpcld 13671 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (2↑𝑁) ∈
ℝ+) |
53 | 52 | rpcnne0d 12494 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ ((2↑𝑁) ∈
ℂ ∧ (2↑𝑁)
≠ 0)) |
54 | | divdiv1 11402 |
. . . . . . . 8
⊢ (((𝐴 − 1) ∈ ℂ ∧
(2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0)) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2 · (2↑𝑁)))) |
55 | 47, 50, 53, 54 | syl3an 1157 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2 · (2↑𝑁)))) |
56 | 10 | recnd 10720 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2↑𝑁) ∈ ℂ) |
57 | 11, 56 | mulcomd 10713 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2 · (2↑𝑁)) = ((2↑𝑁) · 2)) |
58 | 11, 21 | expp1d 13574 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) |
59 | 57, 58 | eqtr4d 2796 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2 · (2↑𝑁)) = (2↑(𝑁 + 1))) |
60 | 59 | oveq2d 7172 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → ((𝐴 − 1) / (2 · (2↑𝑁))) = ((𝐴 − 1) / (2↑(𝑁 + 1)))) |
61 | 55, 60 | eqtrd 2793 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (((𝐴 − 1) / 2) / (2↑𝑁)) = ((𝐴 − 1) / (2↑(𝑁 + 1)))) |
62 | 61 | fveq2d 6667 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘(((𝐴 − 1) / 2) / (2↑𝑁))) = (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1))))) |
63 | 44, 62 | eqtrd 2793 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘((𝐴 − 1) / (2↑(𝑁 + 1))))) |
64 | 32, 36, 63 | 3brtr4d 5068 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → ((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) <
(⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁)))) |
65 | 19 | rehalfcld 11934 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (𝐴 / 2) ∈ ℝ) |
66 | 65, 10, 16 | redivcld 11519 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → ((𝐴 / 2) / (2↑𝑁)) ∈ ℝ) |
67 | | reflcl 13228 |
. . . . . . 7
⊢ ((𝐴 / 2) ∈ ℝ →
(⌊‘(𝐴 / 2))
∈ ℝ) |
68 | 65, 67 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘(𝐴 / 2)) ∈ ℝ) |
69 | 48 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → 2 ∈ ℝ+) |
70 | 69, 15 | rpexpcld 13671 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2↑𝑁) ∈
ℝ+) |
71 | | flle 13231 |
. . . . . . 7
⊢ ((𝐴 / 2) ∈ ℝ →
(⌊‘(𝐴 / 2))
≤ (𝐴 /
2)) |
72 | 65, 71 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘(𝐴 / 2)) ≤ (𝐴 / 2)) |
73 | 68, 65, 70, 72 | lediv1dd 12543 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → ((⌊‘(𝐴 / 2)) / (2↑𝑁)) ≤ ((𝐴 / 2) / (2↑𝑁))) |
74 | | flwordi 13244 |
. . . . 5
⊢
((((⌊‘(𝐴
/ 2)) / (2↑𝑁)) ∈
ℝ ∧ ((𝐴 / 2) /
(2↑𝑁)) ∈ ℝ
∧ ((⌊‘(𝐴 /
2)) / (2↑𝑁)) ≤
((𝐴 / 2) / (2↑𝑁))) →
(⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘((𝐴 / 2) / (2↑𝑁)))) |
75 | 17, 66, 73, 74 | syl3anc 1368 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘((𝐴 / 2) / (2↑𝑁)))) |
76 | | divdiv1 11402 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ (2 ∈
ℂ ∧ 2 ≠ 0) ∧ ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0)) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2 · (2↑𝑁)))) |
77 | 45, 50, 53, 76 | syl3an 1157 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2 · (2↑𝑁)))) |
78 | 52 | rpcnd 12487 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ (2↑𝑁) ∈
ℂ) |
79 | 78 | 3ad2ant3 1132 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2↑𝑁) ∈ ℂ) |
80 | 11, 79 | mulcomd 10713 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2 · (2↑𝑁)) = ((2↑𝑁) · 2)) |
81 | 11, 13, 15 | expp1zd 13582 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2↑(𝑁 + 1)) = ((2↑𝑁) · 2)) |
82 | 80, 81 | eqtr4d 2796 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (2 · (2↑𝑁)) = (2↑(𝑁 + 1))) |
83 | 82 | oveq2d 7172 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (𝐴 / (2 · (2↑𝑁))) = (𝐴 / (2↑(𝑁 + 1)))) |
84 | 77, 83 | eqtrd 2793 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → ((𝐴 / 2) / (2↑𝑁)) = (𝐴 / (2↑(𝑁 + 1)))) |
85 | 84 | eqcomd 2764 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (𝐴 / (2↑(𝑁 + 1))) = ((𝐴 / 2) / (2↑𝑁))) |
86 | 85 | fveq2d 6667 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) = (⌊‘((𝐴 / 2) / (2↑𝑁)))) |
87 | 75, 86 | breqtrrd 5064 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1))))) |
88 | | zgtp1leeq 45354 |
. . . 4
⊢
(((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ ∧
(⌊‘(𝐴 /
(2↑(𝑁 + 1)))) ∈
ℤ) → ((((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) <
(⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∧
(⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1))))) →
(⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1)))))) |
89 | 88 | imp 410 |
. . 3
⊢
((((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∈ ℤ ∧
(⌊‘(𝐴 /
(2↑(𝑁 + 1)))) ∈
ℤ) ∧ (((⌊‘(𝐴 / (2↑(𝑁 + 1)))) − 1) <
(⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ∧
(⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) ≤ (⌊‘(𝐴 / (2↑(𝑁 + 1)))))) →
(⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1))))) |
90 | 18, 29, 64, 87, 89 | syl22anc 837 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁))) = (⌊‘(𝐴 / (2↑(𝑁 + 1))))) |
91 | 90 | eqcomd 2764 |
1
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈
ℕ0) → (⌊‘(𝐴 / (2↑(𝑁 + 1)))) =
(⌊‘((⌊‘(𝐴 / 2)) / (2↑𝑁)))) |