![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zofldiv2 | Structured version Visualization version GIF version |
Description: The floor of an odd integer divided by 2 is equal to the integer first decreased by 1 and then divided by 2. (Contributed by AV, 7-Jun-2020.) |
Ref | Expression |
---|---|
zofldiv2 | ⊢ ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 12505 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
2 | npcan1 11581 | . . . . . . . 8 ⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) | |
3 | 2 | eqcomd 2743 | . . . . . . 7 ⊢ (𝑁 ∈ ℂ → 𝑁 = ((𝑁 − 1) + 1)) |
4 | 1, 3 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 = ((𝑁 − 1) + 1)) |
5 | 4 | oveq1d 7373 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) = (((𝑁 − 1) + 1) / 2)) |
6 | peano2zm 12547 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
7 | 6 | zcnd 12609 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℂ) |
8 | 1cnd 11151 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
9 | 2cnne0 12364 | . . . . . . 7 ⊢ (2 ∈ ℂ ∧ 2 ≠ 0) | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0)) |
11 | divdir 11839 | . . . . . 6 ⊢ (((𝑁 − 1) ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → (((𝑁 − 1) + 1) / 2) = (((𝑁 − 1) / 2) + (1 / 2))) | |
12 | 7, 8, 10, 11 | syl3anc 1372 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (((𝑁 − 1) + 1) / 2) = (((𝑁 − 1) / 2) + (1 / 2))) |
13 | 5, 12 | eqtrd 2777 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 / 2) = (((𝑁 − 1) / 2) + (1 / 2))) |
14 | 13 | fveq2d 6847 | . . 3 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 / 2)) = (⌊‘(((𝑁 − 1) / 2) + (1 / 2)))) |
15 | 14 | adantr 482 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (⌊‘(𝑁 / 2)) = (⌊‘(((𝑁 − 1) / 2) + (1 / 2)))) |
16 | halfge0 12371 | . . . 4 ⊢ 0 ≤ (1 / 2) | |
17 | halflt1 12372 | . . . 4 ⊢ (1 / 2) < 1 | |
18 | 16, 17 | pm3.2i 472 | . . 3 ⊢ (0 ≤ (1 / 2) ∧ (1 / 2) < 1) |
19 | zob 16242 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 − 1) / 2) ∈ ℤ)) | |
20 | 19 | biimpa 478 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 − 1) / 2) ∈ ℤ) |
21 | halfre 12368 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
22 | flbi2 13723 | . . . 4 ⊢ ((((𝑁 − 1) / 2) ∈ ℤ ∧ (1 / 2) ∈ ℝ) → ((⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2) ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1))) | |
23 | 20, 21, 22 | sylancl 587 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2) ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1))) |
24 | 18, 23 | mpbiri 258 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (⌊‘(((𝑁 − 1) / 2) + (1 / 2))) = ((𝑁 − 1) / 2)) |
25 | 15, 24 | eqtrd 2777 | 1 ⊢ ((𝑁 ∈ ℤ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (⌊‘(𝑁 / 2)) = ((𝑁 − 1) / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2944 class class class wbr 5106 ‘cfv 6497 (class class class)co 7358 ℂcc 11050 ℝcr 11051 0cc0 11052 1c1 11053 + caddc 11055 < clt 11190 ≤ cle 11191 − cmin 11386 / cdiv 11813 2c2 12209 ℤcz 12500 ⌊cfl 13696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 ax-pre-sup 11130 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-sup 9379 df-inf 9380 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-div 11814 df-nn 12155 df-2 12217 df-n0 12415 df-z 12501 df-uz 12765 df-fl 13698 |
This theorem is referenced by: nn0ofldiv2 46625 dignn0flhalflem2 46709 nn0sumshdiglemB 46713 |
Copyright terms: Public domain | W3C validator |