![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abscld | GIF version |
Description: Real closure of absolute value. (Contributed by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
abscld | ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | abscl 11198 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ‘cfv 5255 ℂcc 7872 ℝcr 7873 abscabs 11144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-frec 6446 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-n0 9244 df-z 9321 df-uz 9596 df-rp 9723 df-seqfrec 10522 df-exp 10613 df-cj 10989 df-re 10990 df-im 10991 df-rsqrt 11145 df-abs 11146 |
This theorem is referenced by: maxabsle 11351 maxabslemlub 11354 maxabslemval 11355 maxcl 11357 dfabsmax 11364 maxltsup 11365 max0addsup 11366 minabs 11382 bdtrilem 11385 bdtri 11386 mul0inf 11387 climuni 11439 climabs0 11453 mulcn2 11458 reccn2ap 11459 cn1lem 11460 cjcn2 11462 climsqz 11481 climsqz2 11482 climcvg1nlem 11495 fsumabs 11611 iserabs 11621 divcnv 11643 expcnv 11650 explecnv 11651 absltap 11655 absgtap 11656 georeclim 11659 geoisumr 11664 cvgratnnlemnexp 11670 cvgratnnlemmn 11671 cvgratnnlemabsle 11673 cvgratnnlemfm 11675 cvgratnnlemrate 11676 cvgratnn 11677 cvgratz 11678 mertenslemub 11680 mertenslemi1 11681 mertenslem2 11682 fprodabs 11762 efcllemp 11804 efaddlem 11820 eftlub 11836 ef01bndlem 11902 sin01bnd 11903 cos01bnd 11904 absef 11916 dvdsabseq 11992 alzdvds 11999 dvdsbnd 12096 sqnprm 12277 pclemub 12428 mul4sqlem 12534 addcncntoplem 14740 mulcncflem 14786 cnopnap 14790 maxcncf 14794 mincncf 14795 limcimolemlt 14843 cnplimclemle 14847 limccnp2lem 14855 dveflem 14905 rpabscxpbnd 15114 lgsdirprm 15191 lgsdilem2 15193 lgsne0 15195 lgsabs1 15196 2sqlem1 15271 mul2sq 15273 2sqlem3 15274 qdencn 15587 apdifflemf 15606 apdiff 15608 ltlenmkv 15630 |
Copyright terms: Public domain | W3C validator |