ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abscld GIF version

Theorem abscld 11567
Description: Real closure of absolute value. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
abscld.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
abscld (𝜑 → (abs‘𝐴) ∈ ℝ)

Proof of Theorem abscld
StepHypRef Expression
1 abscld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 abscl 11437 . 2 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
31, 2syl 14 1 (𝜑 → (abs‘𝐴) ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  cfv 5280  cc 7943  cr 7944  abscabs 11383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-rp 9796  df-seqfrec 10615  df-exp 10706  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385
This theorem is referenced by:  maxabsle  11590  maxabslemlub  11593  maxabslemval  11594  maxcl  11596  dfabsmax  11603  maxltsup  11604  max0addsup  11605  minabs  11622  bdtrilem  11625  bdtri  11626  mul0inf  11627  climuni  11679  climabs0  11693  mulcn2  11698  reccn2ap  11699  cn1lem  11700  cjcn2  11702  climsqz  11721  climsqz2  11722  climcvg1nlem  11735  fsumabs  11851  iserabs  11861  divcnv  11883  expcnv  11890  explecnv  11891  absltap  11895  absgtap  11896  georeclim  11899  geoisumr  11904  cvgratnnlemnexp  11910  cvgratnnlemmn  11911  cvgratnnlemabsle  11913  cvgratnnlemfm  11915  cvgratnnlemrate  11916  cvgratnn  11917  cvgratz  11918  mertenslemub  11920  mertenslemi1  11921  mertenslem2  11922  fprodabs  12002  efcllemp  12044  efaddlem  12060  eftlub  12076  ef01bndlem  12142  sin01bnd  12143  cos01bnd  12144  absef  12156  dvdsabseq  12233  alzdvds  12240  dvdsbnd  12352  sqnprm  12533  pclemub  12685  mul4sqlem  12791  addcncntoplem  15108  mulcncflem  15154  cnopnap  15158  maxcncf  15162  mincncf  15163  limcimolemlt  15211  cnplimclemle  15215  limccnp2lem  15223  dveflem  15273  rpabscxpbnd  15487  lgsdirprm  15586  lgsdilem2  15588  lgsne0  15590  lgsabs1  15591  2sqlem1  15666  mul2sq  15668  2sqlem3  15669  qdencn  16107  apdifflemf  16126  apdiff  16128  ltlenmkv  16150
  Copyright terms: Public domain W3C validator