| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abscld | GIF version | ||
| Description: Real closure of absolute value. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| abscld | ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | abscl 11557 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ‘cfv 5317 ℂcc 7993 ℝcr 7994 abscabs 11503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-rp 9846 df-seqfrec 10665 df-exp 10756 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 |
| This theorem is referenced by: maxabsle 11710 maxabslemlub 11713 maxabslemval 11714 maxcl 11716 dfabsmax 11723 maxltsup 11724 max0addsup 11725 minabs 11742 bdtrilem 11745 bdtri 11746 mul0inf 11747 climuni 11799 climabs0 11813 mulcn2 11818 reccn2ap 11819 cn1lem 11820 cjcn2 11822 climsqz 11841 climsqz2 11842 climcvg1nlem 11855 fsumabs 11971 iserabs 11981 divcnv 12003 expcnv 12010 explecnv 12011 absltap 12015 absgtap 12016 georeclim 12019 geoisumr 12024 cvgratnnlemnexp 12030 cvgratnnlemmn 12031 cvgratnnlemabsle 12033 cvgratnnlemfm 12035 cvgratnnlemrate 12036 cvgratnn 12037 cvgratz 12038 mertenslemub 12040 mertenslemi1 12041 mertenslem2 12042 fprodabs 12122 efcllemp 12164 efaddlem 12180 eftlub 12196 ef01bndlem 12262 sin01bnd 12263 cos01bnd 12264 absef 12276 dvdsabseq 12353 alzdvds 12360 dvdsbnd 12472 sqnprm 12653 pclemub 12805 mul4sqlem 12911 addcncntoplem 15229 mulcncflem 15275 cnopnap 15279 maxcncf 15283 mincncf 15284 limcimolemlt 15332 cnplimclemle 15336 limccnp2lem 15344 dveflem 15394 rpabscxpbnd 15608 lgsdirprm 15707 lgsdilem2 15709 lgsne0 15711 lgsabs1 15712 2sqlem1 15787 mul2sq 15789 2sqlem3 15790 qdencn 16354 apdifflemf 16373 apdiff 16375 ltlenmkv 16397 |
| Copyright terms: Public domain | W3C validator |