| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abscld | GIF version | ||
| Description: Real closure of absolute value. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| abscld | ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | abscl 11281 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ‘cfv 5268 ℂcc 7905 ℝcr 7906 abscabs 11227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 ax-arch 8026 ax-caucvg 8027 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-n0 9278 df-z 9355 df-uz 9631 df-rp 9758 df-seqfrec 10574 df-exp 10665 df-cj 11072 df-re 11073 df-im 11074 df-rsqrt 11228 df-abs 11229 |
| This theorem is referenced by: maxabsle 11434 maxabslemlub 11437 maxabslemval 11438 maxcl 11440 dfabsmax 11447 maxltsup 11448 max0addsup 11449 minabs 11466 bdtrilem 11469 bdtri 11470 mul0inf 11471 climuni 11523 climabs0 11537 mulcn2 11542 reccn2ap 11543 cn1lem 11544 cjcn2 11546 climsqz 11565 climsqz2 11566 climcvg1nlem 11579 fsumabs 11695 iserabs 11705 divcnv 11727 expcnv 11734 explecnv 11735 absltap 11739 absgtap 11740 georeclim 11743 geoisumr 11748 cvgratnnlemnexp 11754 cvgratnnlemmn 11755 cvgratnnlemabsle 11757 cvgratnnlemfm 11759 cvgratnnlemrate 11760 cvgratnn 11761 cvgratz 11762 mertenslemub 11764 mertenslemi1 11765 mertenslem2 11766 fprodabs 11846 efcllemp 11888 efaddlem 11904 eftlub 11920 ef01bndlem 11986 sin01bnd 11987 cos01bnd 11988 absef 12000 dvdsabseq 12077 alzdvds 12084 dvdsbnd 12196 sqnprm 12377 pclemub 12529 mul4sqlem 12635 addcncntoplem 14951 mulcncflem 14997 cnopnap 15001 maxcncf 15005 mincncf 15006 limcimolemlt 15054 cnplimclemle 15058 limccnp2lem 15066 dveflem 15116 rpabscxpbnd 15330 lgsdirprm 15429 lgsdilem2 15431 lgsne0 15433 lgsabs1 15434 2sqlem1 15509 mul2sq 15511 2sqlem3 15512 qdencn 15830 apdifflemf 15849 apdiff 15851 ltlenmkv 15873 |
| Copyright terms: Public domain | W3C validator |