| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abscld | GIF version | ||
| Description: Real closure of absolute value. (Contributed by Mario Carneiro, 29-May-2016.) |
| Ref | Expression |
|---|---|
| abscld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| abscld | ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abscld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | abscl 11437 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ‘cfv 5280 ℂcc 7943 ℝcr 7944 abscabs 11383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-z 9393 df-uz 9669 df-rp 9796 df-seqfrec 10615 df-exp 10706 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 |
| This theorem is referenced by: maxabsle 11590 maxabslemlub 11593 maxabslemval 11594 maxcl 11596 dfabsmax 11603 maxltsup 11604 max0addsup 11605 minabs 11622 bdtrilem 11625 bdtri 11626 mul0inf 11627 climuni 11679 climabs0 11693 mulcn2 11698 reccn2ap 11699 cn1lem 11700 cjcn2 11702 climsqz 11721 climsqz2 11722 climcvg1nlem 11735 fsumabs 11851 iserabs 11861 divcnv 11883 expcnv 11890 explecnv 11891 absltap 11895 absgtap 11896 georeclim 11899 geoisumr 11904 cvgratnnlemnexp 11910 cvgratnnlemmn 11911 cvgratnnlemabsle 11913 cvgratnnlemfm 11915 cvgratnnlemrate 11916 cvgratnn 11917 cvgratz 11918 mertenslemub 11920 mertenslemi1 11921 mertenslem2 11922 fprodabs 12002 efcllemp 12044 efaddlem 12060 eftlub 12076 ef01bndlem 12142 sin01bnd 12143 cos01bnd 12144 absef 12156 dvdsabseq 12233 alzdvds 12240 dvdsbnd 12352 sqnprm 12533 pclemub 12685 mul4sqlem 12791 addcncntoplem 15108 mulcncflem 15154 cnopnap 15158 maxcncf 15162 mincncf 15163 limcimolemlt 15211 cnplimclemle 15215 limccnp2lem 15223 dveflem 15273 rpabscxpbnd 15487 lgsdirprm 15586 lgsdilem2 15588 lgsne0 15590 lgsabs1 15591 2sqlem1 15666 mul2sq 15668 2sqlem3 15669 qdencn 16107 apdifflemf 16126 apdiff 16128 ltlenmkv 16150 |
| Copyright terms: Public domain | W3C validator |