ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bits0 GIF version

Theorem bits0 12425
Description: Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bits0 (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ 𝑁))

Proof of Theorem bits0
StepHypRef Expression
1 0nn0 9352 . . 3 0 ∈ ℕ0
2 bitsval2 12421 . . 3 ((𝑁 ∈ ℤ ∧ 0 ∈ ℕ0) → (0 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑0)))))
31, 2mpan2 425 . 2 (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑0)))))
4 2cn 9149 . . . . . . . . 9 2 ∈ ℂ
5 exp0 10732 . . . . . . . . 9 (2 ∈ ℂ → (2↑0) = 1)
64, 5ax-mp 5 . . . . . . . 8 (2↑0) = 1
76oveq2i 5985 . . . . . . 7 (𝑁 / (2↑0)) = (𝑁 / 1)
8 zcn 9419 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
98div1d 8895 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 / 1) = 𝑁)
107, 9eqtrid 2254 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 / (2↑0)) = 𝑁)
1110fveq2d 5607 . . . . 5 (𝑁 ∈ ℤ → (⌊‘(𝑁 / (2↑0))) = (⌊‘𝑁))
12 flid 10471 . . . . 5 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
1311, 12eqtrd 2242 . . . 4 (𝑁 ∈ ℤ → (⌊‘(𝑁 / (2↑0))) = 𝑁)
1413breq2d 4074 . . 3 (𝑁 ∈ ℤ → (2 ∥ (⌊‘(𝑁 / (2↑0))) ↔ 2 ∥ 𝑁))
1514notbid 671 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ (⌊‘(𝑁 / (2↑0))) ↔ ¬ 2 ∥ 𝑁))
163, 15bitrd 188 1 (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105   = wceq 1375  wcel 2180   class class class wbr 4062  cfv 5294  (class class class)co 5974  cc 7965  0cc0 7967  1c1 7968   / cdiv 8787  2c2 9129  0cn0 9337  cz 9414  cfl 10455  cexp 10727  cdvds 12264  bitscbits 12417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fl 10457  df-seqfrec 10637  df-exp 10728  df-bits 12418
This theorem is referenced by:  bits0e  12426  bits0o  12427
  Copyright terms: Public domain W3C validator