ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bits0o GIF version

Theorem bits0o 12305
Description: The zeroth bit of an odd number is one. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bits0o (𝑁 ∈ ℤ → 0 ∈ (bits‘((2 · 𝑁) + 1)))

Proof of Theorem bits0o
StepHypRef Expression
1 2z 9407 . . . 4 2 ∈ ℤ
2 dvdsmul1 12168 . . . 4 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 2 ∥ (2 · 𝑁))
31, 2mpan 424 . . 3 (𝑁 ∈ ℤ → 2 ∥ (2 · 𝑁))
41a1i 9 . . . . 5 (𝑁 ∈ ℤ → 2 ∈ ℤ)
5 id 19 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
64, 5zmulcld 9508 . . . 4 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ)
7 2nn 9205 . . . . 5 2 ∈ ℕ
87a1i 9 . . . 4 (𝑁 ∈ ℤ → 2 ∈ ℕ)
9 1lt2 9213 . . . . 5 1 < 2
109a1i 9 . . . 4 (𝑁 ∈ ℤ → 1 < 2)
11 ndvdsp1 12287 . . . 4 (((2 · 𝑁) ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ (2 · 𝑁) → ¬ 2 ∥ ((2 · 𝑁) + 1)))
126, 8, 10, 11syl3anc 1250 . . 3 (𝑁 ∈ ℤ → (2 ∥ (2 · 𝑁) → ¬ 2 ∥ ((2 · 𝑁) + 1)))
133, 12mpd 13 . 2 (𝑁 ∈ ℤ → ¬ 2 ∥ ((2 · 𝑁) + 1))
146peano2zd 9505 . . 3 (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ)
15 bits0 12303 . . 3 (((2 · 𝑁) + 1) ∈ ℤ → (0 ∈ (bits‘((2 · 𝑁) + 1)) ↔ ¬ 2 ∥ ((2 · 𝑁) + 1)))
1614, 15syl 14 . 2 (𝑁 ∈ ℤ → (0 ∈ (bits‘((2 · 𝑁) + 1)) ↔ ¬ 2 ∥ ((2 · 𝑁) + 1)))
1713, 16mpbird 167 1 (𝑁 ∈ ℤ → 0 ∈ (bits‘((2 · 𝑁) + 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wcel 2177   class class class wbr 4047  cfv 5276  (class class class)co 5951  0cc0 7932  1c1 7933   + caddc 7935   · cmul 7937   < clt 8114  cn 9043  2c2 9094  cz 9379  cdvds 12142  bitscbits 12295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-recs 6398  df-frec 6484  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-n0 9303  df-z 9380  df-uz 9656  df-q 9748  df-rp 9783  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-dvds 12143  df-bits 12296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator