ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bits0o GIF version

Theorem bits0o 12132
Description: The zeroth bit of an odd number is one. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
bits0o (𝑁 ∈ ℤ → 0 ∈ (bits‘((2 · 𝑁) + 1)))

Proof of Theorem bits0o
StepHypRef Expression
1 2z 9371 . . . 4 2 ∈ ℤ
2 dvdsmul1 11995 . . . 4 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 2 ∥ (2 · 𝑁))
31, 2mpan 424 . . 3 (𝑁 ∈ ℤ → 2 ∥ (2 · 𝑁))
41a1i 9 . . . . 5 (𝑁 ∈ ℤ → 2 ∈ ℤ)
5 id 19 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
64, 5zmulcld 9471 . . . 4 (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ)
7 2nn 9169 . . . . 5 2 ∈ ℕ
87a1i 9 . . . 4 (𝑁 ∈ ℤ → 2 ∈ ℕ)
9 1lt2 9177 . . . . 5 1 < 2
109a1i 9 . . . 4 (𝑁 ∈ ℤ → 1 < 2)
11 ndvdsp1 12114 . . . 4 (((2 · 𝑁) ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ (2 · 𝑁) → ¬ 2 ∥ ((2 · 𝑁) + 1)))
126, 8, 10, 11syl3anc 1249 . . 3 (𝑁 ∈ ℤ → (2 ∥ (2 · 𝑁) → ¬ 2 ∥ ((2 · 𝑁) + 1)))
133, 12mpd 13 . 2 (𝑁 ∈ ℤ → ¬ 2 ∥ ((2 · 𝑁) + 1))
146peano2zd 9468 . . 3 (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ)
15 bits0 12130 . . 3 (((2 · 𝑁) + 1) ∈ ℤ → (0 ∈ (bits‘((2 · 𝑁) + 1)) ↔ ¬ 2 ∥ ((2 · 𝑁) + 1)))
1614, 15syl 14 . 2 (𝑁 ∈ ℤ → (0 ∈ (bits‘((2 · 𝑁) + 1)) ↔ ¬ 2 ∥ ((2 · 𝑁) + 1)))
1713, 16mpbird 167 1 (𝑁 ∈ ℤ → 0 ∈ (bits‘((2 · 𝑁) + 1)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wcel 2167   class class class wbr 4034  cfv 5259  (class class class)co 5925  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901   < clt 8078  cn 9007  2c2 9058  cz 9343  cdvds 11969  bitscbits 12122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-bits 12123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator