| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 01sqrex | Structured version Visualization version GIF version | ||
| Description: Existence of a square root for reals in the interval (0, 1]. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| Ref | Expression |
|---|---|
| 01sqrex | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴} = {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴} | |
| 2 | eqid 2733 | . . 3 ⊢ sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) = sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) | |
| 3 | 1, 2 | 01sqrexlem4 15154 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ∈ ℝ+ ∧ sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ≤ 1)) |
| 4 | eqid 2733 | . . 3 ⊢ {𝑧 ∣ ∃𝑤 ∈ {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}∃𝑥 ∈ {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}𝑧 = (𝑤 · 𝑥)} = {𝑧 ∣ ∃𝑤 ∈ {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}∃𝑥 ∈ {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}𝑧 = (𝑤 · 𝑥)} | |
| 5 | 1, 2, 4 | 01sqrexlem7 15157 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < )↑2) = 𝐴) |
| 6 | breq1 5096 | . . . . 5 ⊢ (𝑥 = sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) → (𝑥 ≤ 1 ↔ sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ≤ 1)) | |
| 7 | oveq1 7359 | . . . . . 6 ⊢ (𝑥 = sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) → (𝑥↑2) = (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < )↑2)) | |
| 8 | 7 | eqeq1d 2735 | . . . . 5 ⊢ (𝑥 = sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) → ((𝑥↑2) = 𝐴 ↔ (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < )↑2) = 𝐴)) |
| 9 | 6, 8 | anbi12d 632 | . . . 4 ⊢ (𝑥 = sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) → ((𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴) ↔ (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ≤ 1 ∧ (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < )↑2) = 𝐴))) |
| 10 | 9 | rspcev 3573 | . . 3 ⊢ ((sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ∈ ℝ+ ∧ (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ≤ 1 ∧ (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < )↑2) = 𝐴)) → ∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴)) |
| 11 | 10 | anassrs 467 | . 2 ⊢ (((sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ∈ ℝ+ ∧ sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ≤ 1) ∧ (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < )↑2) = 𝐴) → ∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴)) |
| 12 | 3, 5, 11 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 ∃wrex 3057 {crab 3396 class class class wbr 5093 (class class class)co 7352 supcsup 9331 ℝcr 11012 1c1 11014 · cmul 11018 < clt 11153 ≤ cle 11154 2c2 12187 ℝ+crp 12892 ↑cexp 13970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-seq 13911 df-exp 13971 |
| This theorem is referenced by: resqrex 15159 |
| Copyright terms: Public domain | W3C validator |