MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  01sqrex Structured version   Visualization version   GIF version

Theorem 01sqrex 15270
Description: Existence of a square root for reals in the interval (0, 1]. (Contributed by Mario Carneiro, 10-Jul-2013.)
Assertion
Ref Expression
01sqrex ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem 01sqrex
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . 3 {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴} = {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}
2 eqid 2734 . . 3 sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) = sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < )
31, 201sqrexlem4 15266 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ∈ ℝ+ ∧ sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ≤ 1))
4 eqid 2734 . . 3 {𝑧 ∣ ∃𝑤 ∈ {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}∃𝑥 ∈ {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}𝑧 = (𝑤 · 𝑥)} = {𝑧 ∣ ∃𝑤 ∈ {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}∃𝑥 ∈ {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}𝑧 = (𝑤 · 𝑥)}
51, 2, 401sqrexlem7 15269 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < )↑2) = 𝐴)
6 breq1 5126 . . . . 5 (𝑥 = sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) → (𝑥 ≤ 1 ↔ sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ≤ 1))
7 oveq1 7420 . . . . . 6 (𝑥 = sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) → (𝑥↑2) = (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < )↑2))
87eqeq1d 2736 . . . . 5 (𝑥 = sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) → ((𝑥↑2) = 𝐴 ↔ (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < )↑2) = 𝐴))
96, 8anbi12d 632 . . . 4 (𝑥 = sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) → ((𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴) ↔ (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ≤ 1 ∧ (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < )↑2) = 𝐴)))
109rspcev 3605 . . 3 ((sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ∈ ℝ+ ∧ (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ≤ 1 ∧ (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < )↑2) = 𝐴)) → ∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴))
1110anassrs 467 . 2 (((sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ∈ ℝ+ ∧ sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ≤ 1) ∧ (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < )↑2) = 𝐴) → ∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴))
123, 5, 11syl2anc 584 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2712  wrex 3059  {crab 3419   class class class wbr 5123  (class class class)co 7413  supcsup 9462  cr 11136  1c1 11138   · cmul 11142   < clt 11277  cle 11278  2c2 12303  +crp 13016  cexp 14084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-seq 14025  df-exp 14085
This theorem is referenced by:  resqrex  15271
  Copyright terms: Public domain W3C validator