![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 01sqrex | Structured version Visualization version GIF version |
Description: Existence of a square root for reals in the interval (0, 1]. (Contributed by Mario Carneiro, 10-Jul-2013.) |
Ref | Expression |
---|---|
01sqrex | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴} = {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴} | |
2 | eqid 2737 | . . 3 ⊢ sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) = sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) | |
3 | 1, 2 | 01sqrexlem4 15290 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ∈ ℝ+ ∧ sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ≤ 1)) |
4 | eqid 2737 | . . 3 ⊢ {𝑧 ∣ ∃𝑤 ∈ {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}∃𝑥 ∈ {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}𝑧 = (𝑤 · 𝑥)} = {𝑧 ∣ ∃𝑤 ∈ {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}∃𝑥 ∈ {𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}𝑧 = (𝑤 · 𝑥)} | |
5 | 1, 2, 4 | 01sqrexlem7 15293 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < )↑2) = 𝐴) |
6 | breq1 5154 | . . . . 5 ⊢ (𝑥 = sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) → (𝑥 ≤ 1 ↔ sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ≤ 1)) | |
7 | oveq1 7445 | . . . . . 6 ⊢ (𝑥 = sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) → (𝑥↑2) = (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < )↑2)) | |
8 | 7 | eqeq1d 2739 | . . . . 5 ⊢ (𝑥 = sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) → ((𝑥↑2) = 𝐴 ↔ (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < )↑2) = 𝐴)) |
9 | 6, 8 | anbi12d 632 | . . . 4 ⊢ (𝑥 = sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) → ((𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴) ↔ (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ≤ 1 ∧ (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < )↑2) = 𝐴))) |
10 | 9 | rspcev 3625 | . . 3 ⊢ ((sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ∈ ℝ+ ∧ (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ≤ 1 ∧ (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < )↑2) = 𝐴)) → ∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴)) |
11 | 10 | anassrs 467 | . 2 ⊢ (((sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ∈ ℝ+ ∧ sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < ) ≤ 1) ∧ (sup({𝑦 ∈ ℝ+ ∣ (𝑦↑2) ≤ 𝐴}, ℝ, < )↑2) = 𝐴) → ∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴)) |
12 | 3, 5, 11 | syl2anc 584 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ∃𝑥 ∈ ℝ+ (𝑥 ≤ 1 ∧ (𝑥↑2) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2714 ∃wrex 3070 {crab 3436 class class class wbr 5151 (class class class)co 7438 supcsup 9487 ℝcr 11161 1c1 11163 · cmul 11167 < clt 11302 ≤ cle 11303 2c2 12328 ℝ+crp 13041 ↑cexp 14108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-sup 9489 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-n0 12534 df-z 12621 df-uz 12886 df-rp 13042 df-seq 14049 df-exp 14109 |
This theorem is referenced by: resqrex 15295 |
Copyright terms: Public domain | W3C validator |