MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binom2sub Structured version   Visualization version   GIF version

Theorem binom2sub 13235
Description: Expand the square of a subtraction. (Contributed by Scott Fenton, 10-Jun-2013.)
Assertion
Ref Expression
binom2sub ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2)))

Proof of Theorem binom2sub
StepHypRef Expression
1 negcl 10572 . . . 4 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
2 binom2 13233 . . . 4 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → ((𝐴 + -𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · -𝐵))) + (-𝐵↑2)))
31, 2sylan2 587 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + -𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · -𝐵))) + (-𝐵↑2)))
4 negsub 10621 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
54oveq1d 6893 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + -𝐵)↑2) = ((𝐴𝐵)↑2))
63, 5eqtr3d 2835 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · -𝐵))) + (-𝐵↑2)) = ((𝐴𝐵)↑2))
7 mulneg2 10759 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
87oveq2d 6894 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · -𝐵)) = (2 · -(𝐴 · 𝐵)))
9 2cn 11388 . . . . . . 7 2 ∈ ℂ
10 mulcl 10308 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
11 mulneg2 10759 . . . . . . 7 ((2 ∈ ℂ ∧ (𝐴 · 𝐵) ∈ ℂ) → (2 · -(𝐴 · 𝐵)) = -(2 · (𝐴 · 𝐵)))
129, 10, 11sylancr 582 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · -(𝐴 · 𝐵)) = -(2 · (𝐴 · 𝐵)))
138, 12eqtr2d 2834 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(2 · (𝐴 · 𝐵)) = (2 · (𝐴 · -𝐵)))
1413oveq2d 6894 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) + -(2 · (𝐴 · 𝐵))) = ((𝐴↑2) + (2 · (𝐴 · -𝐵))))
15 sqcl 13179 . . . . . 6 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
1615adantr 473 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
17 mulcl 10308 . . . . . 6 ((2 ∈ ℂ ∧ (𝐴 · 𝐵) ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
189, 10, 17sylancr 582 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
1916, 18negsubd 10690 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) + -(2 · (𝐴 · 𝐵))) = ((𝐴↑2) − (2 · (𝐴 · 𝐵))))
2014, 19eqtr3d 2835 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) + (2 · (𝐴 · -𝐵))) = ((𝐴↑2) − (2 · (𝐴 · 𝐵))))
21 sqneg 13177 . . . 4 (𝐵 ∈ ℂ → (-𝐵↑2) = (𝐵↑2))
2221adantl 474 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐵↑2) = (𝐵↑2))
2320, 22oveq12d 6896 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · -𝐵))) + (-𝐵↑2)) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
246, 23eqtr3d 2835 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  (class class class)co 6878  cc 10222   + caddc 10227   · cmul 10229  cmin 10556  -cneg 10557  2c2 11368  cexp 13114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-n0 11581  df-z 11667  df-uz 11931  df-seq 13056  df-exp 13115
This theorem is referenced by:  binom2sub1  13236  binom2subi  13237  amgm2  14450  pythagtriplem1  15854  pythagtriplem14  15866  tangtx  24599  heron  24917  dcubic1  24924  dquart  24932  asinsin  24971
  Copyright terms: Public domain W3C validator