Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > strle2 | Structured version Visualization version GIF version |
Description: Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
strle1.i | ⊢ 𝐼 ∈ ℕ |
strle1.a | ⊢ 𝐴 = 𝐼 |
strle2.j | ⊢ 𝐼 < 𝐽 |
strle2.k | ⊢ 𝐽 ∈ ℕ |
strle2.b | ⊢ 𝐵 = 𝐽 |
Ref | Expression |
---|---|
strle2 | ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} Struct 〈𝐼, 𝐽〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4575 | . 2 ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} = ({〈𝐴, 𝑋〉} ∪ {〈𝐵, 𝑌〉}) | |
2 | strle1.i | . . . 4 ⊢ 𝐼 ∈ ℕ | |
3 | strle1.a | . . . 4 ⊢ 𝐴 = 𝐼 | |
4 | 2, 3 | strle1 16948 | . . 3 ⊢ {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉 |
5 | strle2.k | . . . 4 ⊢ 𝐽 ∈ ℕ | |
6 | strle2.b | . . . 4 ⊢ 𝐵 = 𝐽 | |
7 | 5, 6 | strle1 16948 | . . 3 ⊢ {〈𝐵, 𝑌〉} Struct 〈𝐽, 𝐽〉 |
8 | strle2.j | . . 3 ⊢ 𝐼 < 𝐽 | |
9 | 4, 7, 8 | strleun 16947 | . 2 ⊢ ({〈𝐴, 𝑋〉} ∪ {〈𝐵, 𝑌〉}) Struct 〈𝐼, 𝐽〉 |
10 | 1, 9 | eqbrtri 5110 | 1 ⊢ {〈𝐴, 𝑋〉, 〈𝐵, 𝑌〉} Struct 〈𝐼, 𝐽〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 ∪ cun 3895 {csn 4572 {cpr 4574 〈cop 4578 class class class wbr 5089 < clt 11102 ℕcn 12066 Struct cstr 16936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-n0 12327 df-z 12413 df-uz 12676 df-fz 13333 df-struct 16937 |
This theorem is referenced by: strle3 16950 2strstr 17023 2strstr1 17026 prdsvalstr 17252 ipostr 18336 eengstr 27578 idlsrgstr 31885 algstr 41253 |
Copyright terms: Public domain | W3C validator |