Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 5t3e15 | Structured version Visualization version GIF version |
Description: 5 times 3 equals 15. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
5t3e15 | ⊢ (5 · 3) = ;15 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn0 12183 | . 2 ⊢ 5 ∈ ℕ0 | |
2 | 2nn0 12180 | . 2 ⊢ 2 ∈ ℕ0 | |
3 | df-3 11967 | . 2 ⊢ 3 = (2 + 1) | |
4 | 5t2e10 12466 | . 2 ⊢ (5 · 2) = ;10 | |
5 | dec10p 12409 | . 2 ⊢ (;10 + 5) = ;15 | |
6 | 1, 2, 3, 4, 5 | 4t3lem 12463 | 1 ⊢ (5 · 3) = ;15 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 0cc0 10802 1c1 10803 · cmul 10807 2c2 11958 3c3 11959 5c5 11961 ;cdc 12366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-dec 12367 |
This theorem is referenced by: 5t4e20 12468 17prm 16746 prmlem2 16749 163prm 16754 317prm 16755 1259lem4 16763 2503lem2 16767 4001prm 16774 log2ub 26004 hgt750lem2 32532 3lexlogpow5ineq5 39996 inductionexd 41654 fmtno5lem2 44894 fmtno5lem3 44895 fmtno4prmfac193 44913 127prm 44939 |
Copyright terms: Public domain | W3C validator |