MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decaddci Structured version   Visualization version   GIF version

Theorem decaddci 12742
Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
decaddi.1 𝐴 ∈ ℕ0
decaddi.2 𝐵 ∈ ℕ0
decaddi.3 𝑁 ∈ ℕ0
decaddi.4 𝑀 = 𝐴𝐵
decaddci.5 (𝐴 + 1) = 𝐷
decaddci.6 𝐶 ∈ ℕ0
decaddci.7 (𝐵 + 𝑁) = 1𝐶
Assertion
Ref Expression
decaddci (𝑀 + 𝑁) = 𝐷𝐶

Proof of Theorem decaddci
StepHypRef Expression
1 decaddi.1 . 2 𝐴 ∈ ℕ0
2 decaddi.2 . 2 𝐵 ∈ ℕ0
3 0nn0 12491 . 2 0 ∈ ℕ0
4 decaddi.3 . 2 𝑁 ∈ ℕ0
5 decaddi.4 . 2 𝑀 = 𝐴𝐵
64dec0h 12703 . 2 𝑁 = 0𝑁
71nn0cni 12488 . . . . 5 𝐴 ∈ ℂ
87addridi 11405 . . . 4 (𝐴 + 0) = 𝐴
98oveq1i 7415 . . 3 ((𝐴 + 0) + 1) = (𝐴 + 1)
10 decaddci.5 . . 3 (𝐴 + 1) = 𝐷
119, 10eqtri 2754 . 2 ((𝐴 + 0) + 1) = 𝐷
12 decaddci.6 . 2 𝐶 ∈ ℕ0
13 decaddci.7 . 2 (𝐵 + 𝑁) = 1𝐶
141, 2, 3, 4, 5, 6, 11, 12, 13decaddc 12736 1 (𝑀 + 𝑁) = 𝐷𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wcel 2098  (class class class)co 7405  0cc0 11112  1c1 11113   + caddc 11115  0cn0 12476  cdc 12681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-ltxr 11257  df-sub 11450  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-dec 12682
This theorem is referenced by:  decaddci2  12743  6t4e24  12787  7t3e21  12791  7t5e35  12793  7t6e42  12794  8t3e24  12797  8t4e32  12798  8t7e56  12801  8t8e64  12802  9t3e27  12804  9t4e36  12805  9t5e45  12806  9t6e54  12807  9t7e63  12808  9t8e72  12809  9t9e81  12810  2exp8  17031  2exp11  17032  prmlem2  17062  43prm  17064  83prm  17065  317prm  17068  631prm  17069  1259lem1  17073  1259lem2  17074  1259lem3  17075  1259lem4  17076  1259lem5  17077  2503lem1  17079  2503lem2  17080  2503lem3  17081  4001lem1  17083  4001lem2  17084  4001lem4  17086  log2ublem3  26835  log2ub  26836  ex-exp  30212  hgt750lem2  34193  3exp7  41434  3lexlogpow5ineq1  41435  resqrtvalex  42972  imsqrtvalex  42973  fmtno5lem1  46793  fmtno5lem4  46796  257prm  46801  fmtno4nprmfac193  46814  fmtno5fac  46822  127prm  46839  2exp340mod341  46973  ackval3012  47653
  Copyright terms: Public domain W3C validator