| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decaddci | Structured version Visualization version GIF version | ||
| Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| decaddi.1 | ⊢ 𝐴 ∈ ℕ0 |
| decaddi.2 | ⊢ 𝐵 ∈ ℕ0 |
| decaddi.3 | ⊢ 𝑁 ∈ ℕ0 |
| decaddi.4 | ⊢ 𝑀 = ;𝐴𝐵 |
| decaddci.5 | ⊢ (𝐴 + 1) = 𝐷 |
| decaddci.6 | ⊢ 𝐶 ∈ ℕ0 |
| decaddci.7 | ⊢ (𝐵 + 𝑁) = ;1𝐶 |
| Ref | Expression |
|---|---|
| decaddci | ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decaddi.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decaddi.2 | . 2 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 0nn0 12514 | . 2 ⊢ 0 ∈ ℕ0 | |
| 4 | decaddi.3 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
| 5 | decaddi.4 | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
| 6 | 4 | dec0h 12728 | . 2 ⊢ 𝑁 = ;0𝑁 |
| 7 | 1 | nn0cni 12511 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 8 | 7 | addridi 11420 | . . . 4 ⊢ (𝐴 + 0) = 𝐴 |
| 9 | 8 | oveq1i 7413 | . . 3 ⊢ ((𝐴 + 0) + 1) = (𝐴 + 1) |
| 10 | decaddci.5 | . . 3 ⊢ (𝐴 + 1) = 𝐷 | |
| 11 | 9, 10 | eqtri 2758 | . 2 ⊢ ((𝐴 + 0) + 1) = 𝐷 |
| 12 | decaddci.6 | . 2 ⊢ 𝐶 ∈ ℕ0 | |
| 13 | decaddci.7 | . 2 ⊢ (𝐵 + 𝑁) = ;1𝐶 | |
| 14 | 1, 2, 3, 4, 5, 6, 11, 12, 13 | decaddc 12761 | 1 ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7403 0cc0 11127 1c1 11128 + caddc 11130 ℕ0cn0 12499 ;cdc 12706 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-ltxr 11272 df-sub 11466 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-dec 12707 |
| This theorem is referenced by: decaddci2 12768 6t4e24 12812 7t3e21 12816 7t5e35 12818 7t6e42 12819 8t3e24 12822 8t4e32 12823 8t7e56 12826 8t8e64 12827 9t3e27 12829 9t4e36 12830 9t5e45 12831 9t6e54 12832 9t7e63 12833 9t8e72 12834 9t9e81 12835 2exp8 17106 2exp11 17107 prmlem2 17137 43prm 17139 83prm 17140 317prm 17143 631prm 17144 1259lem1 17148 1259lem2 17149 1259lem3 17150 1259lem4 17151 1259lem5 17152 2503lem1 17154 2503lem2 17155 2503lem3 17156 4001lem1 17158 4001lem2 17159 4001lem4 17161 log2ublem3 26908 log2ub 26909 ex-exp 30377 hgt750lem2 34630 3exp7 42012 3lexlogpow5ineq1 42013 resqrtvalex 43616 imsqrtvalex 43617 fmtno5lem1 47515 fmtno5lem4 47518 257prm 47523 fmtno4nprmfac193 47536 fmtno5fac 47544 127prm 47561 2exp340mod341 47695 ackval3012 48620 |
| Copyright terms: Public domain | W3C validator |