![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decaddci | Structured version Visualization version GIF version |
Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
decaddi.1 | ⊢ 𝐴 ∈ ℕ0 |
decaddi.2 | ⊢ 𝐵 ∈ ℕ0 |
decaddi.3 | ⊢ 𝑁 ∈ ℕ0 |
decaddi.4 | ⊢ 𝑀 = ;𝐴𝐵 |
decaddci.5 | ⊢ (𝐴 + 1) = 𝐷 |
decaddci.6 | ⊢ 𝐶 ∈ ℕ0 |
decaddci.7 | ⊢ (𝐵 + 𝑁) = ;1𝐶 |
Ref | Expression |
---|---|
decaddci | ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decaddi.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
2 | decaddi.2 | . 2 ⊢ 𝐵 ∈ ℕ0 | |
3 | 0nn0 12527 | . 2 ⊢ 0 ∈ ℕ0 | |
4 | decaddi.3 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
5 | decaddi.4 | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
6 | 4 | dec0h 12739 | . 2 ⊢ 𝑁 = ;0𝑁 |
7 | 1 | nn0cni 12524 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
8 | 7 | addridi 11441 | . . . 4 ⊢ (𝐴 + 0) = 𝐴 |
9 | 8 | oveq1i 7436 | . . 3 ⊢ ((𝐴 + 0) + 1) = (𝐴 + 1) |
10 | decaddci.5 | . . 3 ⊢ (𝐴 + 1) = 𝐷 | |
11 | 9, 10 | eqtri 2756 | . 2 ⊢ ((𝐴 + 0) + 1) = 𝐷 |
12 | decaddci.6 | . 2 ⊢ 𝐶 ∈ ℕ0 | |
13 | decaddci.7 | . 2 ⊢ (𝐵 + 𝑁) = ;1𝐶 | |
14 | 1, 2, 3, 4, 5, 6, 11, 12, 13 | decaddc 12772 | 1 ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 (class class class)co 7426 0cc0 11148 1c1 11149 + caddc 11151 ℕ0cn0 12512 ;cdc 12717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-pnf 11290 df-mnf 11291 df-ltxr 11293 df-sub 11486 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-7 12320 df-8 12321 df-9 12322 df-n0 12513 df-dec 12718 |
This theorem is referenced by: decaddci2 12779 6t4e24 12823 7t3e21 12827 7t5e35 12829 7t6e42 12830 8t3e24 12833 8t4e32 12834 8t7e56 12837 8t8e64 12838 9t3e27 12840 9t4e36 12841 9t5e45 12842 9t6e54 12843 9t7e63 12844 9t8e72 12845 9t9e81 12846 2exp8 17067 2exp11 17068 prmlem2 17098 43prm 17100 83prm 17101 317prm 17104 631prm 17105 1259lem1 17109 1259lem2 17110 1259lem3 17111 1259lem4 17112 1259lem5 17113 2503lem1 17115 2503lem2 17116 2503lem3 17117 4001lem1 17119 4001lem2 17120 4001lem4 17122 log2ublem3 26908 log2ub 26909 ex-exp 30288 hgt750lem2 34325 3exp7 41564 3lexlogpow5ineq1 41565 resqrtvalex 43124 imsqrtvalex 43125 fmtno5lem1 46940 fmtno5lem4 46943 257prm 46948 fmtno4nprmfac193 46961 fmtno5fac 46969 127prm 46986 2exp340mod341 47120 ackval3012 47861 |
Copyright terms: Public domain | W3C validator |