MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decaddci Structured version   Visualization version   GIF version

Theorem decaddci 12791
Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
decaddi.1 𝐴 ∈ ℕ0
decaddi.2 𝐵 ∈ ℕ0
decaddi.3 𝑁 ∈ ℕ0
decaddi.4 𝑀 = 𝐴𝐵
decaddci.5 (𝐴 + 1) = 𝐷
decaddci.6 𝐶 ∈ ℕ0
decaddci.7 (𝐵 + 𝑁) = 1𝐶
Assertion
Ref Expression
decaddci (𝑀 + 𝑁) = 𝐷𝐶

Proof of Theorem decaddci
StepHypRef Expression
1 decaddi.1 . 2 𝐴 ∈ ℕ0
2 decaddi.2 . 2 𝐵 ∈ ℕ0
3 0nn0 12538 . 2 0 ∈ ℕ0
4 decaddi.3 . 2 𝑁 ∈ ℕ0
5 decaddi.4 . 2 𝑀 = 𝐴𝐵
64dec0h 12752 . 2 𝑁 = 0𝑁
71nn0cni 12535 . . . . 5 𝐴 ∈ ℂ
87addridi 11445 . . . 4 (𝐴 + 0) = 𝐴
98oveq1i 7440 . . 3 ((𝐴 + 0) + 1) = (𝐴 + 1)
10 decaddci.5 . . 3 (𝐴 + 1) = 𝐷
119, 10eqtri 2762 . 2 ((𝐴 + 0) + 1) = 𝐷
12 decaddci.6 . 2 𝐶 ∈ ℕ0
13 decaddci.7 . 2 (𝐵 + 𝑁) = 1𝐶
141, 2, 3, 4, 5, 6, 11, 12, 13decaddc 12785 1 (𝑀 + 𝑁) = 𝐷𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  wcel 2105  (class class class)co 7430  0cc0 11152  1c1 11153   + caddc 11155  0cn0 12523  cdc 12730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-ltxr 11297  df-sub 11491  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-dec 12731
This theorem is referenced by:  decaddci2  12792  6t4e24  12836  7t3e21  12840  7t5e35  12842  7t6e42  12843  8t3e24  12846  8t4e32  12847  8t7e56  12850  8t8e64  12851  9t3e27  12853  9t4e36  12854  9t5e45  12855  9t6e54  12856  9t7e63  12857  9t8e72  12858  9t9e81  12859  2exp8  17122  2exp11  17123  prmlem2  17153  43prm  17155  83prm  17156  317prm  17159  631prm  17160  1259lem1  17164  1259lem2  17165  1259lem3  17166  1259lem4  17167  1259lem5  17168  2503lem1  17170  2503lem2  17171  2503lem3  17172  4001lem1  17174  4001lem2  17175  4001lem4  17177  log2ublem3  27005  log2ub  27006  ex-exp  30478  hgt750lem2  34645  3exp7  42034  3lexlogpow5ineq1  42035  resqrtvalex  43634  imsqrtvalex  43635  fmtno5lem1  47477  fmtno5lem4  47480  257prm  47485  fmtno4nprmfac193  47498  fmtno5fac  47506  127prm  47523  2exp340mod341  47657  ackval3012  48541
  Copyright terms: Public domain W3C validator