| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decaddci | Structured version Visualization version GIF version | ||
| Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| decaddi.1 | ⊢ 𝐴 ∈ ℕ0 |
| decaddi.2 | ⊢ 𝐵 ∈ ℕ0 |
| decaddi.3 | ⊢ 𝑁 ∈ ℕ0 |
| decaddi.4 | ⊢ 𝑀 = ;𝐴𝐵 |
| decaddci.5 | ⊢ (𝐴 + 1) = 𝐷 |
| decaddci.6 | ⊢ 𝐶 ∈ ℕ0 |
| decaddci.7 | ⊢ (𝐵 + 𝑁) = ;1𝐶 |
| Ref | Expression |
|---|---|
| decaddci | ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decaddi.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decaddi.2 | . 2 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 0nn0 12403 | . 2 ⊢ 0 ∈ ℕ0 | |
| 4 | decaddi.3 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
| 5 | decaddi.4 | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
| 6 | 4 | dec0h 12616 | . 2 ⊢ 𝑁 = ;0𝑁 |
| 7 | 1 | nn0cni 12400 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 8 | 7 | addridi 11307 | . . . 4 ⊢ (𝐴 + 0) = 𝐴 |
| 9 | 8 | oveq1i 7362 | . . 3 ⊢ ((𝐴 + 0) + 1) = (𝐴 + 1) |
| 10 | decaddci.5 | . . 3 ⊢ (𝐴 + 1) = 𝐷 | |
| 11 | 9, 10 | eqtri 2756 | . 2 ⊢ ((𝐴 + 0) + 1) = 𝐷 |
| 12 | decaddci.6 | . 2 ⊢ 𝐶 ∈ ℕ0 | |
| 13 | decaddci.7 | . 2 ⊢ (𝐵 + 𝑁) = ;1𝐶 | |
| 14 | 1, 2, 3, 4, 5, 6, 11, 12, 13 | decaddc 12649 | 1 ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 (class class class)co 7352 0cc0 11013 1c1 11014 + caddc 11016 ℕ0cn0 12388 ;cdc 12594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 df-sub 11353 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-dec 12595 |
| This theorem is referenced by: decaddci2 12656 6t4e24 12700 7t3e21 12704 7t5e35 12706 7t6e42 12707 8t3e24 12710 8t4e32 12711 8t7e56 12714 8t8e64 12715 9t3e27 12717 9t4e36 12718 9t5e45 12719 9t6e54 12720 9t7e63 12721 9t8e72 12722 9t9e81 12723 2exp8 17002 2exp11 17003 prmlem2 17033 43prm 17035 83prm 17036 317prm 17039 631prm 17040 1259lem1 17044 1259lem2 17045 1259lem3 17046 1259lem4 17047 1259lem5 17048 2503lem1 17050 2503lem2 17051 2503lem3 17052 4001lem1 17054 4001lem2 17055 4001lem4 17057 log2ublem3 26886 log2ub 26887 ex-exp 30432 hgt750lem2 34686 3exp7 42166 3lexlogpow5ineq1 42167 resqrtvalex 43762 imsqrtvalex 43763 fmtno5lem1 47677 fmtno5lem4 47680 257prm 47685 fmtno4nprmfac193 47698 fmtno5fac 47706 127prm 47723 2exp340mod341 47857 ackval3012 48817 |
| Copyright terms: Public domain | W3C validator |