| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decaddci | Structured version Visualization version GIF version | ||
| Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| decaddi.1 | ⊢ 𝐴 ∈ ℕ0 |
| decaddi.2 | ⊢ 𝐵 ∈ ℕ0 |
| decaddi.3 | ⊢ 𝑁 ∈ ℕ0 |
| decaddi.4 | ⊢ 𝑀 = ;𝐴𝐵 |
| decaddci.5 | ⊢ (𝐴 + 1) = 𝐷 |
| decaddci.6 | ⊢ 𝐶 ∈ ℕ0 |
| decaddci.7 | ⊢ (𝐵 + 𝑁) = ;1𝐶 |
| Ref | Expression |
|---|---|
| decaddci | ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decaddi.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decaddi.2 | . 2 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 0nn0 12464 | . 2 ⊢ 0 ∈ ℕ0 | |
| 4 | decaddi.3 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
| 5 | decaddi.4 | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
| 6 | 4 | dec0h 12678 | . 2 ⊢ 𝑁 = ;0𝑁 |
| 7 | 1 | nn0cni 12461 | . . . . 5 ⊢ 𝐴 ∈ ℂ |
| 8 | 7 | addridi 11368 | . . . 4 ⊢ (𝐴 + 0) = 𝐴 |
| 9 | 8 | oveq1i 7400 | . . 3 ⊢ ((𝐴 + 0) + 1) = (𝐴 + 1) |
| 10 | decaddci.5 | . . 3 ⊢ (𝐴 + 1) = 𝐷 | |
| 11 | 9, 10 | eqtri 2753 | . 2 ⊢ ((𝐴 + 0) + 1) = 𝐷 |
| 12 | decaddci.6 | . 2 ⊢ 𝐶 ∈ ℕ0 | |
| 13 | decaddci.7 | . 2 ⊢ (𝐵 + 𝑁) = ;1𝐶 | |
| 14 | 1, 2, 3, 4, 5, 6, 11, 12, 13 | decaddc 12711 | 1 ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 0cc0 11075 1c1 11076 + caddc 11078 ℕ0cn0 12449 ;cdc 12656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-dec 12657 |
| This theorem is referenced by: decaddci2 12718 6t4e24 12762 7t3e21 12766 7t5e35 12768 7t6e42 12769 8t3e24 12772 8t4e32 12773 8t7e56 12776 8t8e64 12777 9t3e27 12779 9t4e36 12780 9t5e45 12781 9t6e54 12782 9t7e63 12783 9t8e72 12784 9t9e81 12785 2exp8 17066 2exp11 17067 prmlem2 17097 43prm 17099 83prm 17100 317prm 17103 631prm 17104 1259lem1 17108 1259lem2 17109 1259lem3 17110 1259lem4 17111 1259lem5 17112 2503lem1 17114 2503lem2 17115 2503lem3 17116 4001lem1 17118 4001lem2 17119 4001lem4 17121 log2ublem3 26865 log2ub 26866 ex-exp 30386 hgt750lem2 34650 3exp7 42048 3lexlogpow5ineq1 42049 resqrtvalex 43641 imsqrtvalex 43642 fmtno5lem1 47558 fmtno5lem4 47561 257prm 47566 fmtno4nprmfac193 47579 fmtno5fac 47587 127prm 47604 2exp340mod341 47738 ackval3012 48685 |
| Copyright terms: Public domain | W3C validator |